Skip to main content
Log in

Electronic excitation energies in TiO2 in the fluorite phase

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

The ab initio pseudopotential method within the generalized gradient approximation (GGA) and quasiparticle approximation has been used to investigate the electronic properties of titanium dioxide in the rutile, anatase, and fluorite structures, respectively. Here we present the GW approximation for the electronic self-energy, which allows to calculate excited-state properties, especially electronic band structures. For this calculation, good agreement with the experimental results for the minimum band gaps in rutile and anatase phase is obtained. In the fluorite phase we predict that titanium dioxide will be an indirect (Γ to X) wide band-gap semiconductor (2.367 or 2.369 eV) and the properties remain to be confirmed by experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Nature (London) 238, 37 (1972)

    Article  ADS  Google Scholar 

  2. R.I. Bickley, R. Soc. Chem. 5, 308 (1982)

    Google Scholar 

  3. M. Grätzel, Comm. Inorg. Chem. 31, 567 (1992)

    Google Scholar 

  4. J.L. Gole, J.D. Stout, C. Burda, Y. Lou, X. Chen, J. Phys. Chem. B 108, 1230 (2004)

    Article  Google Scholar 

  5. W. Choi, A. Termin, M.R. Horrmann, J. Phys. Chem. 98, 13669 (1994)

    Article  Google Scholar 

  6. J.P. Xu, J.F. Wang, Y.B. Lin, X.C. Liu, Z.L. Lu, Z.H. Lu, L.Y. Lv, F.M. Zhang, Y.W. Du, J. Phys. D: Appl. Phys. 40, 4757 (2007)

    Article  ADS  Google Scholar 

  7. K. Shankar, K.C. Tep, G.K. Mor, C.A. Grimes, J. Phys. D: Appl. Phys. 39, 2361 (2006)

    Article  ADS  Google Scholar 

  8. T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, Appl. Catal. A 265, 115 (2004)

    Article  Google Scholar 

  9. H. Fujii, K. Inata, M. Ohtaki, K. Eguchi, H. Arai, J. Mater. Sci. 36, 527 (2001)

    Article  Google Scholar 

  10. M. Anpo, M. Takeuchi, J. Catal. 216, 505 (2003)

    Article  Google Scholar 

  11. H. Otaka, M. Kira, K. Yano, S. Ito, H. Mitekura, T. Kawata, F.J. Matsui, J. Photochem. Photobiol. A: Chem. 164, 67 (2004)

    Article  Google Scholar 

  12. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)

    Article  Google Scholar 

  13. S. Sato, Chem. Phys. lett. 123, 126 (1986)

    Article  ADS  Google Scholar 

  14. S. Livarghi, K. Elghniji, A.M. Czoska, M.C. Paganini, E. Giamell, J. Photochem. A: Chem. 205, 93 (2009)

    Article  Google Scholar 

  15. S.D. Mo, W.Y. Ching, Phys. Rev. B 51, 13023 (1995)

    Article  ADS  Google Scholar 

  16. M. Mattesini, J.S. de Almeida, L. Dubrovinsky, Phys. Rev. B 70, 115101 (2004)

    Article  ADS  Google Scholar 

  17. M.S. Hybertsen, S.G. Louie, Phys. Rev. B 34, 5390 (1986)

    Article  ADS  Google Scholar 

  18. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976)

    Article  MathSciNet  ADS  Google Scholar 

  19. R.W. Godby, M. Schlüter, L.J. Sham, Phys. Rev. B 37, 10159 (1988)

    Article  ADS  Google Scholar 

  20. M. Oshikiri, F. Aryasetiawan, Phys. Rev. B 60, 10754 (1999)

    Article  ADS  Google Scholar 

  21. V. Swamy, L.S. Dubrovinsky, J. Phys. Chem. Solids 62, 673 (2001)

    Article  ADS  Google Scholar 

  22. M.N. Khan, K. Shahzad, J. Bashir, J. Phys. D: Appl. Phys. 41, 085409 (2008)

    Article  Google Scholar 

  23. D.G. Isaak, J.D. Carnes, O.L. Anderson, H. Cynn, E. Hake, Phys. Chem. Miner. 26, 31 (1998)

    Article  ADS  Google Scholar 

  24. M. Mattesini, J.S. de Almeida, L. Dubrovinsky, Phys. Rev. B 70, 212101 (2004)

    Article  ADS  Google Scholar 

  25. J. Muscat, V. Swamy, N.M. Harrison, Phys. Rev. B 65, 224112 (2002)

    Article  ADS  Google Scholar 

  26. J.K. Dewhurst, J.E. Lowther, Phys. Rev. B 54, 3673 (1996)

    Article  ADS  Google Scholar 

  27. L. Thulin, J. Guerra, Phys. Rev. B 77, 195112 (2008)

    Article  ADS  Google Scholar 

  28. M. Lazzeri, A. Vittadini, A. Selloni, Phys. Rev. B 63, 155409 (2001)

    Article  ADS  Google Scholar 

  29. Z.Y. Zhao, Q.J. Liu, J. Phys. D: Appl. Phys. 41, 025105 (2008)

    Article  ADS  Google Scholar 

  30. M. Mikami, S. Nakamura, O. Kitao, H. Arakawa, Phys. Rev. B 66, 155213 (2002)

    Article  ADS  Google Scholar 

  31. M. Calatayud, P.M. Sanchez, A. Beltran, A.M. Pendas, E. Francisco, J. Andres, J.M. Recio, Phys. Rev. B 64, 184113 (2001)

    Article  ADS  Google Scholar 

  32. H.W. Peng, J.B. Li, S.S. Li, J.B. Xia, J. Phys. Chem. C 112, 13964 (2008)

    Article  Google Scholar 

  33. L. Koči, D.Y. Kim, J.S. de Almeida, M. Mattesini, E. Isaev, R. Ahuja, J. Phys.: Condens. Matter 20, 345218 (2008)

    Article  Google Scholar 

  34. P.J.D. Lindan, N.M. Harrison, M.J. Gillan, J.A. White, Phys. Rev. B 55, 15919 (1997)

    Article  ADS  Google Scholar 

  35. K. Rosciszewski, K. Doll, B. Paulus, P. Fulde, H. Stoll, Phys. Rev. B 57, 14667 (1998)

    Article  ADS  Google Scholar 

  36. F. Arntz, Y. Yacoby, Phys. Rev. Lett. 17, 857 (1966)

    Article  ADS  Google Scholar 

  37. C.J. Bradley, A.P. Crácknell, The Mathematical Theory of Symmetry in Solids (Clarendon Press, Oxford, 1972)

  38. M. Oshikiri, F. Aryasetiawan, Phys. Rev. B 60, 10754 (1999)

    Article  ADS  Google Scholar 

  39. N. Daude, C. Gout, C. Jouanin, Phys. Rev. B 15, 3229 (1977)

    Article  ADS  Google Scholar 

  40. A. Rubio, J.L. Corkill, M.L. Cohen, E. Shirley, S.G. Louie, Phys. Rev. B 48, 11810 (1993)

    Article  ADS  Google Scholar 

  41. F. Bruneval, N. Vast, L. Reining, Phys. Rev. B 74, 045102 (2006)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Gao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kong, X., Yu, Y. & Gao, T. Electronic excitation energies in TiO2 in the fluorite phase. Eur. Phys. J. B 76, 365–371 (2010). https://doi.org/10.1140/epjb/e2010-00215-2

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2010-00215-2

Keywords

Navigation