The European Physical Journal B

, Volume 76, Issue 3, pp 365–371 | Cite as

Electronic excitation energies in TiO2 in the fluorite phase

Solid State and Materials

Abstract.

The ab initio pseudopotential method within the generalized gradient approximation (GGA) and quasiparticle approximation has been used to investigate the electronic properties of titanium dioxide in the rutile, anatase, and fluorite structures, respectively. Here we present the GW approximation for the electronic self-energy, which allows to calculate excited-state properties, especially electronic band structures. For this calculation, good agreement with the experimental results for the minimum band gaps in rutile and anatase phase is obtained. In the fluorite phase we predict that titanium dioxide will be an indirect (Γ to X) wide band-gap semiconductor (2.367 or 2.369 eV) and the properties remain to be confirmed by experiment.

Keywords

Rutile Generalize Gradient Approximation Electronic Excitation Energy Visible Light Illumination Quasiparticle Excitation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Fujishima, K. Honda, Nature (London) 238, 37 (1972) CrossRefADSGoogle Scholar
  2. 2.
    R.I. Bickley, R. Soc. Chem. 5, 308 (1982) Google Scholar
  3. 3.
    M. Grätzel, Comm. Inorg. Chem. 31, 567 (1992) Google Scholar
  4. 4.
    J.L. Gole, J.D. Stout, C. Burda, Y. Lou, X. Chen, J. Phys. Chem. B 108, 1230 (2004) CrossRefGoogle Scholar
  5. 5.
    W. Choi, A. Termin, M.R. Horrmann, J. Phys. Chem. 98, 13669 (1994) CrossRefGoogle Scholar
  6. 6.
    J.P. Xu, J.F. Wang, Y.B. Lin, X.C. Liu, Z.L. Lu, Z.H. Lu, L.Y. Lv, F.M. Zhang, Y.W. Du, J. Phys. D: Appl. Phys. 40, 4757 (2007) CrossRefADSGoogle Scholar
  7. 7.
    K. Shankar, K.C. Tep, G.K. Mor, C.A. Grimes, J. Phys. D: Appl. Phys. 39, 2361 (2006) CrossRefADSGoogle Scholar
  8. 8.
    T. Ohno, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, M. Matsumura, Appl. Catal. A 265, 115 (2004) CrossRefGoogle Scholar
  9. 9.
    H. Fujii, K. Inata, M. Ohtaki, K. Eguchi, H. Arai, J. Mater. Sci. 36, 527 (2001) CrossRefGoogle Scholar
  10. 10.
    M. Anpo, M. Takeuchi, J. Catal. 216, 505 (2003) CrossRefGoogle Scholar
  11. 11.
    H. Otaka, M. Kira, K. Yano, S. Ito, H. Mitekura, T. Kawata, F.J. Matsui, J. Photochem. Photobiol. A: Chem. 164, 67 (2004) CrossRefGoogle Scholar
  12. 12.
    R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001) CrossRefGoogle Scholar
  13. 13.
    S. Sato, Chem. Phys. lett. 123, 126 (1986) CrossRefADSGoogle Scholar
  14. 14.
    S. Livarghi, K. Elghniji, A.M. Czoska, M.C. Paganini, E. Giamell, J. Photochem. A: Chem. 205, 93 (2009) CrossRefGoogle Scholar
  15. 15.
    S.D. Mo, W.Y. Ching, Phys. Rev. B 51, 13023 (1995) CrossRefADSGoogle Scholar
  16. 16.
    M. Mattesini, J.S. de Almeida, L. Dubrovinsky, Phys. Rev. B 70, 115101 (2004) CrossRefADSGoogle Scholar
  17. 17.
    M.S. Hybertsen, S.G. Louie, Phys. Rev. B 34, 5390 (1986) CrossRefADSGoogle Scholar
  18. 18.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976) CrossRefMathSciNetADSGoogle Scholar
  19. 19.
    R.W. Godby, M. Schlüter, L.J. Sham, Phys. Rev. B 37, 10159 (1988) CrossRefADSGoogle Scholar
  20. 20.
    M. Oshikiri, F. Aryasetiawan, Phys. Rev. B 60, 10754 (1999) CrossRefADSGoogle Scholar
  21. 21.
    V. Swamy, L.S. Dubrovinsky, J. Phys. Chem. Solids 62, 673 (2001) CrossRefADSGoogle Scholar
  22. 22.
    M.N. Khan, K. Shahzad, J. Bashir, J. Phys. D: Appl. Phys. 41, 085409 (2008) CrossRefGoogle Scholar
  23. 23.
    D.G. Isaak, J.D. Carnes, O.L. Anderson, H. Cynn, E. Hake, Phys. Chem. Miner. 26, 31 (1998) CrossRefADSGoogle Scholar
  24. 24.
    M. Mattesini, J.S. de Almeida, L. Dubrovinsky, Phys. Rev. B 70, 212101 (2004) CrossRefADSGoogle Scholar
  25. 25.
    J. Muscat, V. Swamy, N.M. Harrison, Phys. Rev. B 65, 224112 (2002) CrossRefADSGoogle Scholar
  26. 26.
    J.K. Dewhurst, J.E. Lowther, Phys. Rev. B 54, 3673 (1996) CrossRefADSGoogle Scholar
  27. 27.
    L. Thulin, J. Guerra, Phys. Rev. B 77, 195112 (2008) CrossRefADSGoogle Scholar
  28. 28.
    M. Lazzeri, A. Vittadini, A. Selloni, Phys. Rev. B 63, 155409 (2001) CrossRefADSGoogle Scholar
  29. 29.
    Z.Y. Zhao, Q.J. Liu, J. Phys. D: Appl. Phys. 41, 025105 (2008) CrossRefADSGoogle Scholar
  30. 30.
    M. Mikami, S. Nakamura, O. Kitao, H. Arakawa, Phys. Rev. B 66, 155213 (2002) CrossRefADSGoogle Scholar
  31. 31.
    M. Calatayud, P.M. Sanchez, A. Beltran, A.M. Pendas, E. Francisco, J. Andres, J.M. Recio, Phys. Rev. B 64, 184113 (2001) CrossRefADSGoogle Scholar
  32. 32.
    H.W. Peng, J.B. Li, S.S. Li, J.B. Xia, J. Phys. Chem. C 112, 13964 (2008) CrossRefGoogle Scholar
  33. 33.
    L. Koči, D.Y. Kim, J.S. de Almeida, M. Mattesini, E. Isaev, R. Ahuja, J. Phys.: Condens. Matter 20, 345218 (2008) CrossRefGoogle Scholar
  34. 34.
    P.J.D. Lindan, N.M. Harrison, M.J. Gillan, J.A. White, Phys. Rev. B 55, 15919 (1997) CrossRefADSGoogle Scholar
  35. 35.
    K. Rosciszewski, K. Doll, B. Paulus, P. Fulde, H. Stoll, Phys. Rev. B 57, 14667 (1998) CrossRefADSGoogle Scholar
  36. 36.
    F. Arntz, Y. Yacoby, Phys. Rev. Lett. 17, 857 (1966) CrossRefADSGoogle Scholar
  37. 37.
    C.J. Bradley, A.P. Crácknell, The Mathematical Theory of Symmetry in Solids (Clarendon Press, Oxford, 1972) Google Scholar
  38. 38.
    M. Oshikiri, F. Aryasetiawan, Phys. Rev. B 60, 10754 (1999) CrossRefADSGoogle Scholar
  39. 39.
    N. Daude, C. Gout, C. Jouanin, Phys. Rev. B 15, 3229 (1977) CrossRefADSGoogle Scholar
  40. 40.
    A. Rubio, J.L. Corkill, M.L. Cohen, E. Shirley, S.G. Louie, Phys. Rev. B 48, 11810 (1993) CrossRefADSGoogle Scholar
  41. 41.
    F. Bruneval, N. Vast, L. Reining, Phys. Rev. B 74, 045102 (2006) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Institute of Atom and Molecular Physics, Sichuan UniversityChengduP.R. China
  2. 2.College of Materials Science and Engineering, Sichuan UniversityChengduP.R. China

Personalised recommendations