The European Physical Journal B

, Volume 74, Issue 3, pp 419–427 | Cite as

Braid matrices and quantum gates for Ising anyons topological quantum computation

Computational Methods


We study various aspects of the topological quantum computation scheme based on the non-Abelian anyons corresponding to fractional quantum hall effect states at filling fraction 5/2 using the Temperley-Lieb recoupling theory. Unitary braiding matrices are obtained by a normalization of the degenerate ground states of a system of anyons, which is equivalent to a modification of the definition of the 3-vertices in the Temperley-Lieb recoupling theory as proposed by Kauffman and Lomonaco. With the braid matrices available, we discuss the problems of encoding of qubit states and construction of quantum gates from the elementary braiding operation matrices for the Ising anyons model. In the encoding scheme where 2 qubits are represented by 8 Ising anyons, we give an alternative proof of the no-entanglement theorem given by Bravyi and compare it to the case of Fibonacci anyons model. In the encoding scheme where 2 qubits are represented by 6 Ising anyons, we construct a set of quantum gates which is equivalent to the construction of Georgiev.


Total Spin Braid Group Fusion Rule Quantum Gate World Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000) Google Scholar
  2. A.Y. Kitaev, Ann. Phys. (N.Y.) 303, 2 (2003) Google Scholar
  3. R.W. Ogburn, J. Preskill, Lect. Notes Comput. Sci. 1509, 341 (1999) Google Scholar
  4. M.H. Freedman, A. Kitaev, Z. Wang, Commun. Math. Phys. 227, 605 (2002) Google Scholar
  5. M.H. Freedman, M. Larsen, Z. Wang, Commun. Math. Phys. 228, 177 (2002) Google Scholar
  6. M. Freedman, A. Kitaev, M. Larsen, Z. Wang, Bull. Am. Math. Soc. 40, 31 (2003) Google Scholar
  7. E. Dennis, A. Kitaev, A. Landahl, J. Preskill, J. Math. Phys. 43, 4452 (2002) Google Scholar
  8. C. Mochon, Phys. Rev. A 67, 022315 (2003) Google Scholar
  9. C. Mochon, Phys. Rev. A 69, 032306 (2004) Google Scholar
  10. L.H. Kauffman, S.J. Lomonaco Jr., New J. Phys. 6, 134 (2004) Google Scholar
  11. J. Preskill, Google Scholar
  12. C. Nayak, S.H. Simon, A. Stern, M. Freedman, S. Das Sarma, Rev. Mod. Phys. 80, 1083 (2008) Google Scholar
  13. G.K. Brennen, J.K. Pachos, Proc. R. Soc. A 464, 1 (2008) Google Scholar
  14. S.B. Chung, M. Stone, Phys. Rev. B 73, 245311 (2006) Google Scholar
  15. A. Stern, B.I. Halperin, Phys. Rev. Lett. 96, 016802 (2006) Google Scholar
  16. P. Bonderson, A. Kitaev, K. Shtengel, Phys. Rev. Lett. 96, 016803 (2006) Google Scholar
  17. P. Bonderson, K. Shtengel, J.K. Slingerland, Phys. Rev. Lett. 97, 016401 (2006) Google Scholar
  18. D.E. Feldman, A. Kitaev, Phys. Rev. Lett. 97, 186803 (2006) Google Scholar
  19. D.E. Feldman, Y. Gefen, A. Kitaev, K.T. Law, A. Stern, Phys. Rev. B 76, 085333 (2007) Google Scholar
  20. Fractional Statistics and Anyon Superconductivity, edited by F. Wilczek (World Scientific, Singapore, 1990) Google Scholar
  21. J. Fröhlich, F. Gabbiani, Rev. Math. Phys. 2–3, 251 (1990) Google Scholar
  22. D.V. Averin, V.J. Goldman, Solid State Commun. 121, 25 (2002) Google Scholar
  23. G. Moore, N. Read, Nucl. Phys. B 360, 362 (1991) Google Scholar
  24. N. Read, E. Rezayi, Phys. Rev. B 59, 8084 (1999) Google Scholar
  25. E. Witten, Commun. Math. Phys. 121, 351 (1989) Google Scholar
  26. A.B. Zamolodchikov, V.A. Fateev, Sov. Phys. JETP 62, 215 (1985) Google Scholar
  27. V.F.R. Jones, Bull. Amer. Math. Soc. 129, 103 (1985) Google Scholar
  28. L.H. Kauffman, S.J. Lomonaco Jr., J. Knot Theory Ramif. 16, 267 (2007) Google Scholar
  29. L.H. Kauffman, S.J. Lomonaco Jr., Int. J. Mod. Phys. B, 22, 5065 (2008) Google Scholar
  30. L.H. Kauffman, S.L. Lins, Temperley-Lieb Recoupling Theory and Invariants of 3-Manifolds (Princeton Univ. Press, Princeton, 1994) Google Scholar
  31. M. Dolev, M. Heiblum, V. Umansky, A. Stern, D. Mahalu, Nature (London) 452, 829 (2008) Google Scholar
  32. I.P. Radu, J.B. Miller, C.M. Marcus, M.A. Kastner, L.N. Pfeiffer, K.W. West, Science 320, 899 (2008) Google Scholar
  33. C. Nayak, F. Wilczek, Nucl. Phys. B 479, 529 (1996) Google Scholar
  34. L.S. Georgiev, J. Phys. A: Math. Theor. 42, 225203 (2009) Google Scholar
  35. J.K. Slingerland, F.A. Bais, Nucl. Phys. B 612, 229 (2001) Google Scholar
  36. J.P. Eisenstein, K.B. Cooper, L.N. Pfeiffer, K.W. West, Phys. Rev. Lett. 88, 076801 (2002) Google Scholar
  37. J.S. Xia, W. Pan, C.L. Vincente, E.D. Adams, N.S. Sullivan, H.L. Stormer, D.C. Tsui, L.N. Pfeiffer, K.W. Baldwin, K.W. West, Phys. Rev. Lett. 93, 176809 (2004) Google Scholar
  38. S. Das Sarma, M. Freedman, C. Nayak, Phys. Rev. Lett. 94, 166802 (2005) Google Scholar
  39. S. Bravyi, Phys. Rev. A 73, 042313 (2006) Google Scholar
  40. M. Freedman, C. Nayak, K. Walker, Phys. Rev. B 73, 245307 (2006) Google Scholar
  41. L.S. Georgiev, Phys. Rev. B 74, 235112 (2006) Google Scholar
  42. L.S. Georgiev, Nucl. Phys. B 789, 552 (2008) Google Scholar
  43. O. Zilberberg, B. Braunecker, D. Loss, Phys. Rev. A 77, 012327 (2008) Google Scholar
  44. L.S. Georgiev, J. Stat. Mech. P12013 (2009) Google Scholar
  45. A. Ahlbrecht, L.S. Georgiev, R.F. Werner, Phys. Rev. A 79, 032311 (2009) Google Scholar
  46. N.E. Bonesteel, L. Hormozi, G. Zikos, S.H. Simon, Phys. Rev. Lett. 95, 140503 (2005) Google Scholar
  47. S.H. Simon, N.E. Bonesteel, M.H. Freedman, N. Petrovic, L. Hormozi, Phys. Rev. Lett. 96, 070503 (2006) Google Scholar
  48. L. Hormozi, G. Zikos, N.E. Bonesteel, S.H. Simon, Phys. Rev. B 75, 165310 (2007) Google Scholar
  49. G. Moore, N. Seiberg, Commun. Math. Phys. 123, 177 (1989) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  1. 1.Department of PhysicsNanjing UniversityNanjingP.R. China
  2. 2.Computer Science Department, Xiamen UniversityArtificial Intelligence InstituteXiamenFujian Province, P.R. China

Personalised recommendations