Skip to main content
Log in

Interaction properties of the periodic and step-like solutions of the double-Sine-Gordon equation

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

The periodic and step-like solutions of the double-Sine-Gordon equation are investigated, with different initial conditions and for various values of the potential parameter epsilon. We plot energy and force diagrams, as functions of the inter-soliton distance for such solutions. This allows us to consider our system as an interacting many-body system in 1+1 dimension. We therefore plot state diagrams (pressure vs. average density) for step-like as well as periodic solutions. Step-like solutions are shown to behave similarly to their counterparts in the Sine-Gordon system. However, periodic solutions show a fundamentally different behavior as the parameter epsilon is increased. We show that two distinct phases of periodic solutions exist which exhibit manifestly different behavior. Response functions for these phases are shown to behave differently, joining at an apparent phase transition point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ishikawa, K. Hide, J. Phys. C: Solid State Phys. (1984)

  2. R. Khomeriki, J. Leon, Phys. Rev. E 71, 056620 (2005)

    Article  ADS  Google Scholar 

  3. G. Fiore, math-ph/0512002 (2005)

  4. N. Riazi, A. Azizi, S.M. Zebarjad, Phys. Rev. D 66, 065003 (2002)

    Article  ADS  Google Scholar 

  5. L.V. Yakushevich, Nonlinear Physics of DNA (Wiley, 2004)

  6. L.V. Yakushevich, A.V. Savin, L.I. Manevitch, Phys. Rev. E 66, 016614 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  7. S. Cuenda, A. Sanchez, N.R. Quintero, Physica D 223, 214221 (2006)

    Article  MathSciNet  Google Scholar 

  8. J. Timonen, M. Stirland, D.J. Pilling, Y. Cheng, R.K. Bullough, Phys. Rev. Lett. 56, 2233 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  9. S. Burdick, M. El-Batanouny, C.R. Willis, Phys. Rev. B 34, 6575 (1986)

    Article  ADS  Google Scholar 

  10. K. Maki, P. Kumer, Phys. Rev. B 14, 118 (1976); K. Maki, P. Kumer, Phys. Rev. 14, 3290 (1976)

    Article  ADS  Google Scholar 

  11. Y. Shiefman, P. Kumer, Phys. Scr. 20, 435 (1979)

    Article  MATH  ADS  Google Scholar 

  12. K.M. Leung, Phys. Rev. B 27, 2877 (1983)

    Article  ADS  Google Scholar 

  13. O. Hudak, J. Phys. Chem. 16, 2641 (1983); O. Hudak, J. Phys. Chem. 16, 2659 (1983)

    Google Scholar 

  14. M. El-Batanouny, S. Burdick, K.M. Martini, P. Stancioff, Phys. Rev. Lett. 58, 2762 (1987)

    Article  ADS  Google Scholar 

  15. E. Magyari, Phys. Rev. B 29, 7082 (1984)

    Article  ADS  Google Scholar 

  16. J. Pouget, G.A. Maugin, Phys. Rev. B 30, 5306 (1984); J. Pouget, G.A. Maugin, Phys. Rev. 31, 4633 (1984)

    Article  ADS  Google Scholar 

  17. N. Hatakenaka, H. Takayanagi, Y. Kasai, S. Tanda, Physica B 284, 563 (2000)

    Article  ADS  Google Scholar 

  18. T. Uchiyama, Phys. Rev. D 14, 3520 (1976)

    Article  ADS  Google Scholar 

  19. S. Duckworth, R.K. Bullough, P.J. Caudrey, J.D. Gibbon, Phys. Lett. A 57, 19 (1976)

    Article  Google Scholar 

  20. V.A. Gani, A.E. Kudryavtsev, Phys. Rev. E 60, 3305 (1999)

    Article  ADS  Google Scholar 

  21. M. Croitoru, J. Phys. A: Math. Gen. 22, 845 (1989)

    Article  ADS  Google Scholar 

  22. C.A. Popov, Wave Motion. 42, 309 (2006)

    Article  Google Scholar 

  23. N. Riazi, A.R. Gharaati, Int. J. Theor. Phys. 37, 1081 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  24. M. Wang, X. Li, Chaos, Solitons and Fractals. 27, 477 (2006)

    Article  MathSciNet  Google Scholar 

  25. C.A. Condat, R.A. Guyer, M.D. Miller, Phys. Rev. B 27, 474 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  26. L.H. Ryder, Quantum Field Theory (Cambridge University Press, 1985)

  27. M. Guidry, Gauge Field Theories, an Introduction with Applications (Wiley, New York, 1991)

    Google Scholar 

  28. N. Riazi, Int. J. Theor. Phys. GTNO 8, 115 (2001)

    MathSciNet  Google Scholar 

  29. E. Kreyszig, Advanced Engineering Mathematics (John Wiley and Sons, New York, 1983)

    MATH  Google Scholar 

  30. The lower bound for the value of P, in general, depends on ɛ. However, for the set of initial conditions we consider this lower bound is ɛ independent and is equal to −2

  31. Note that from equation (6), ρ ν = T 0 0 = 2 = constant for the false vacuum and Eρ ν L at large L

  32. R. D’Inverno, Introducing Einstein’s Relativity (Oxford University Press, New York 1992)

    MATH  Google Scholar 

  33. H.B. Callen, Thermodynamics and an Introduction to Thermostatistics (John Wiley and Sons, New York, 1985)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshin Montakhab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peyravi, M., Montakhab, A., Riazi, N. et al. Interaction properties of the periodic and step-like solutions of the double-Sine-Gordon equation. Eur. Phys. J. B 72, 269–277 (2009). https://doi.org/10.1140/epjb/e2009-00331-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00331-0

PACS

Navigation