X-ray diffraction study of the evolution of Fe-filled multiwalled carbon nanotubes under pressure

  • J. Cambedouzou
  • V. Heresanu
  • C. Castro
  • M. Pinault
  • F. Datchi
  • M. Mezouar
  • M. Mayne-L’Hermite
  • N. Bendiab
  • P. Launois
Mesoscopic and Nanoscale Systems

Abstract

We present in situ high pressure X-ray diffraction experiments on multi-walled carbon nanotubes (MWNTs) filled with iron-based nanowires. In addition to our diffraction results, we provide a detailed characterization of our samples in terms of nanotube length, iron contents, nanotube number of walls and radial dimension. Both carbon nanotubes and encapsulated iron-based nanowires were found to be stable under high pressure conditions, in contrast with previous experiments performed on Fe-filled MWNTs where structural transitions of nanotubes and Fe3C nanowires were recorded around 9 GPa. We point out the importance of providing a complete structural characterization of the studied material and we propose an explanation for the contradictory results found in the literature based on different structural characteristics of the samples and on recent results on the non-hydrostaticity of some pressure transmitting media.

PACS

07.35.+k High-pressure apparatus; shock tubes; diamond anvil cells 61.05.cp X-ray diffraction 61.46.-w Structure of nanoscale materials 61.48.De Structure of carbon nanotubes, boron nanotubes, and closely related graphitelike systems 

References

  1. 1.
    S. Iijima, Nature 354, 56 (1991)CrossRefADSGoogle Scholar
  2. 2.
    M.S. Dresselhaus, G. Dresselhaus, Ph. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, Berlin, 2001)Google Scholar
  3. 3.
    A. Loiseau, P. Launois, P. Petit, S. Roche, J.P. Salvetat, Understanding Carbon Nanotubes (Springer, Berlin Heidenberg, 2006)Google Scholar
  4. 4.
    R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, J. Chen, Chem. Phys. Lett. 303, 467 (1999)CrossRefADSGoogle Scholar
  5. 5.
    M. Mayne, N. Grobert, M. Terrones, R. Kamalakaran, M. Rüle, H.W. Kroto, D.R.M. Walton, Chem. Phys. Lett. 362, 101 (2001)CrossRefGoogle Scholar
  6. 6.
    C. Singh, M.S.P. Schaffer, K.K.K. Koziol, I.A. Kinloch, A.H. Windle, Chem. Phys. Lett. 372, 860 (2003)CrossRefADSGoogle Scholar
  7. 7.
    B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Science 303, 62 (2004)CrossRefADSGoogle Scholar
  8. 8.
    N. Grobert, W.K. Hsu, Y.Q. Zhu, J.P. Hare, H.W. Kroto, D.R.M. Dalton, M. Terrones, H. Terrones, Ph. Redlich, M. Rhüle, R. Escudero, F. Morales, Appl. Phys. Lett. 75, 3363 (1999)CrossRefADSGoogle Scholar
  9. 9.
    C. Thomsen, S. Reich, H. Jantoljak, I. Loa, K. Syassen, M. Burghard, G.S. Duesberg, S. Roth, Appl. Phys. A 69, 309 (1999)CrossRefADSGoogle Scholar
  10. 10.
    J. Sandler, M.S.P. Shaffer, A.H. Windle, M.P. Hallsal, M.A. Montes-Morán, C.A. Cooper, R.J. Young, Phys.Rev. B 67, 035417 (2003)CrossRefADSGoogle Scholar
  11. 11.
    I. Loa, J. Raman, Spectrosc. 34, 611 (2003)ADSGoogle Scholar
  12. 12.
    O. Zhou, R.M. Fleming, D.W. Murphy, C.H. Chen, R.C. Haddon, A.P. Ramirez, S.H. Glarum, Science 263, 1744 (1994)CrossRefADSGoogle Scholar
  13. 13.
    L.C. Chen, L.J. Wang, D.S. Tang, S.S. Xie, C.Q. Jin, Chin. Phys. Lett. 18, 577 (2001)CrossRefADSGoogle Scholar
  14. 14.
    S. Karmakar, S.M. Sharma, P.V. Teredesai, A.K. Sood, Phys. Rev. B 69, 165414 (2004)CrossRefADSGoogle Scholar
  15. 15.
    H. Yusa, T. Watanuki, Carbon 43, 519 (2005)CrossRefGoogle Scholar
  16. 16.
    S. Karmakar, P.W. Tyagi, D.S. Misra, S.M. Sharma, Phys. Rev. B 73, 184119 (2006)CrossRefADSGoogle Scholar
  17. 17.
    H.K. Poswal, S. Karmakar, P.W. Tyagi, D.S. Misra, E. Busetto, S.M. Sharma, A.K. Sood, Phys. Stat. Sol. B 244, 3612 (2007)CrossRefGoogle Scholar
  18. 18.
    D. Reznik, C.H. Olk, D.A. Neumann, J.R.D. Copley, Phys. Rev. B 52, 116 (1995)CrossRefADSGoogle Scholar
  19. 19.
    W. Utsumi, T. Yagi, Science 252, 1542 (1991)ADSGoogle Scholar
  20. 20.
    T. Yagi, W. Utsumi, M. Yamakata, T. Kikegawa, O. Shimomura, Phys. Rev. B 46, 6031 (1992)CrossRefADSGoogle Scholar
  21. 21.
    L. Sun, F. Banhart, A.V. Krasheninnikov, J.A. Rodriguez-Manzo, M. Terrones, P.M. Ajayan, Science 312, 1199 (2006)CrossRefADSGoogle Scholar
  22. 22.
    M. Pinault, V. Pichot, H. Khodja, P. Launois, C. Reynaud, M. Mayne-L’Hermite, Nano Lett. 5, 2394 (2005)CrossRefADSGoogle Scholar
  23. 23.
    H.K. Mao, J. Xu, P.M. Bell, J. Geophys. Res. B 91, 4673 (1986)CrossRefADSGoogle Scholar
  24. 24.
    F. Datchi, R. LeToullec, P. Loubeyre, J. Appl. Phys. 81, 3333 (1997)CrossRefADSGoogle Scholar
  25. 25.
    M. Pinault, M. Mayne-L’Hermite, C. Reynaud, V. Pichot, P. Launois, D. Ballutaud, Carbon 43, 2968 (2005)CrossRefGoogle Scholar
  26. 26.
    V. Heresanu, C. Castro, J. Cambedouzou, M. Pinault, O. Stephan, C. Reynaud, M. Mayne-L’Hermite, P. Launois, J. Phys. Chem. C 112, 7371 (2008)CrossRefGoogle Scholar
  27. 27.
    R.M. Cornell, U. Schwertmann, The Iron Oxides (VCH, New York, 1994), p. 363Google Scholar
  28. 28.
    B.C. Satishkumar, A. Govindaraj, P.V. Vanitha, A.K. Raychaudhuri, C.N.R. Rao, Chem. Phys. Lett. 362, 301 (2002)CrossRefADSGoogle Scholar
  29. 29.
    F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944)CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    M. Hanfland, H. Beister, K. Syassen, Phys. Rev. B 39, 12598 (1998)CrossRefADSGoogle Scholar
  31. 31.
    P.K. Tyagi, A. Misra, M.K. Singh, D.S. Misra, J. Ghatak, P.V. Satyam, F. Le Normand, Appl. Phys. Lett. 86, 253110 (2005)CrossRefADSGoogle Scholar
  32. 32.
    S. Klotz, J.-C. Chervin, P. Munch, G. LeMarchand, J. Phys. D: Appl. Phys. 42, 075413 (2009)CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • J. Cambedouzou
    • 1
  • V. Heresanu
    • 1
  • C. Castro
    • 2
  • M. Pinault
    • 2
  • F. Datchi
    • 3
  • M. Mezouar
    • 4
  • M. Mayne-L’Hermite
    • 2
  • N. Bendiab
    • 3
  • P. Launois
    • 1
  1. 1.Laboratoire de Physique des Solides, UMR CNRS 8502, Université Paris-Sud 11Orsay Cedex 5France
  2. 2.Laboratoire Francis Perrin, URA CEA-CNRS 2453, DSM-IRAMIS-SPAM, CEA SaclayGif-sur-YvetteFrance
  3. 3.IMPMC, Université Pierre et Marie Curie – Paris 6, CNRS UMR 7590ParisFrance
  4. 4.European Synchrotron Radiation FacilityGrenobleFrance

Personalised recommendations