Skip to main content

Advertisement

Log in

X-ray diffraction study of the evolution of Fe-filled multiwalled carbon nanotubes under pressure

  • Mesoscopic and Nanoscale Systems
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present in situ high pressure X-ray diffraction experiments on multi-walled carbon nanotubes (MWNTs) filled with iron-based nanowires. In addition to our diffraction results, we provide a detailed characterization of our samples in terms of nanotube length, iron contents, nanotube number of walls and radial dimension. Both carbon nanotubes and encapsulated iron-based nanowires were found to be stable under high pressure conditions, in contrast with previous experiments performed on Fe-filled MWNTs where structural transitions of nanotubes and Fe3C nanowires were recorded around 9 GPa. We point out the importance of providing a complete structural characterization of the studied material and we propose an explanation for the contradictory results found in the literature based on different structural characteristics of the samples and on recent results on the non-hydrostaticity of some pressure transmitting media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, Nature 354, 56 (1991)

    Article  ADS  Google Scholar 

  2. M.S. Dresselhaus, G. Dresselhaus, Ph. Avouris, Carbon Nanotubes: Synthesis, Structure, Properties, and Applications (Springer, Berlin, 2001)

    Google Scholar 

  3. A. Loiseau, P. Launois, P. Petit, S. Roche, J.P. Salvetat, Understanding Carbon Nanotubes (Springer, Berlin Heidenberg, 2006)

    Google Scholar 

  4. R. Andrews, D. Jacques, A.M. Rao, F. Derbyshire, D. Qian, X. Fan, E.C. Dickey, J. Chen, Chem. Phys. Lett. 303, 467 (1999)

    Article  ADS  Google Scholar 

  5. M. Mayne, N. Grobert, M. Terrones, R. Kamalakaran, M. Rüle, H.W. Kroto, D.R.M. Walton, Chem. Phys. Lett. 362, 101 (2001)

    Article  Google Scholar 

  6. C. Singh, M.S.P. Schaffer, K.K.K. Koziol, I.A. Kinloch, A.H. Windle, Chem. Phys. Lett. 372, 860 (2003)

    Article  ADS  Google Scholar 

  7. B.J. Hinds, N. Chopra, T. Rantell, R. Andrews, V. Gavalas, L.G. Bachas, Science 303, 62 (2004)

    Article  ADS  Google Scholar 

  8. N. Grobert, W.K. Hsu, Y.Q. Zhu, J.P. Hare, H.W. Kroto, D.R.M. Dalton, M. Terrones, H. Terrones, Ph. Redlich, M. Rhüle, R. Escudero, F. Morales, Appl. Phys. Lett. 75, 3363 (1999)

    Article  ADS  Google Scholar 

  9. C. Thomsen, S. Reich, H. Jantoljak, I. Loa, K. Syassen, M. Burghard, G.S. Duesberg, S. Roth, Appl. Phys. A 69, 309 (1999)

    Article  ADS  Google Scholar 

  10. J. Sandler, M.S.P. Shaffer, A.H. Windle, M.P. Hallsal, M.A. Montes-Morán, C.A. Cooper, R.J. Young, Phys.Rev. B 67, 035417 (2003)

    Article  ADS  Google Scholar 

  11. I. Loa, J. Raman, Spectrosc. 34, 611 (2003)

    ADS  Google Scholar 

  12. O. Zhou, R.M. Fleming, D.W. Murphy, C.H. Chen, R.C. Haddon, A.P. Ramirez, S.H. Glarum, Science 263, 1744 (1994)

    Article  ADS  Google Scholar 

  13. L.C. Chen, L.J. Wang, D.S. Tang, S.S. Xie, C.Q. Jin, Chin. Phys. Lett. 18, 577 (2001)

    Article  ADS  Google Scholar 

  14. S. Karmakar, S.M. Sharma, P.V. Teredesai, A.K. Sood, Phys. Rev. B 69, 165414 (2004)

    Article  ADS  Google Scholar 

  15. H. Yusa, T. Watanuki, Carbon 43, 519 (2005)

    Article  Google Scholar 

  16. S. Karmakar, P.W. Tyagi, D.S. Misra, S.M. Sharma, Phys. Rev. B 73, 184119 (2006)

    Article  ADS  Google Scholar 

  17. H.K. Poswal, S. Karmakar, P.W. Tyagi, D.S. Misra, E. Busetto, S.M. Sharma, A.K. Sood, Phys. Stat. Sol. B 244, 3612 (2007)

    Article  Google Scholar 

  18. D. Reznik, C.H. Olk, D.A. Neumann, J.R.D. Copley, Phys. Rev. B 52, 116 (1995)

    Article  ADS  Google Scholar 

  19. W. Utsumi, T. Yagi, Science 252, 1542 (1991)

    ADS  Google Scholar 

  20. T. Yagi, W. Utsumi, M. Yamakata, T. Kikegawa, O. Shimomura, Phys. Rev. B 46, 6031 (1992)

    Article  ADS  Google Scholar 

  21. L. Sun, F. Banhart, A.V. Krasheninnikov, J.A. Rodriguez-Manzo, M. Terrones, P.M. Ajayan, Science 312, 1199 (2006)

    Article  ADS  Google Scholar 

  22. M. Pinault, V. Pichot, H. Khodja, P. Launois, C. Reynaud, M. Mayne-L’Hermite, Nano Lett. 5, 2394 (2005)

    Article  ADS  Google Scholar 

  23. H.K. Mao, J. Xu, P.M. Bell, J. Geophys. Res. B 91, 4673 (1986)

    Article  ADS  Google Scholar 

  24. F. Datchi, R. LeToullec, P. Loubeyre, J. Appl. Phys. 81, 3333 (1997)

    Article  ADS  Google Scholar 

  25. M. Pinault, M. Mayne-L’Hermite, C. Reynaud, V. Pichot, P. Launois, D. Ballutaud, Carbon 43, 2968 (2005)

    Article  Google Scholar 

  26. V. Heresanu, C. Castro, J. Cambedouzou, M. Pinault, O. Stephan, C. Reynaud, M. Mayne-L’Hermite, P. Launois, J. Phys. Chem. C 112, 7371 (2008)

    Article  Google Scholar 

  27. R.M. Cornell, U. Schwertmann, The Iron Oxides (VCH, New York, 1994), p. 363

    Google Scholar 

  28. B.C. Satishkumar, A. Govindaraj, P.V. Vanitha, A.K. Raychaudhuri, C.N.R. Rao, Chem. Phys. Lett. 362, 301 (2002)

    Article  ADS  Google Scholar 

  29. F.D. Murnaghan, Proc. Natl. Acad. Sci. 30, 244 (1944)

    Article  MathSciNet  ADS  Google Scholar 

  30. M. Hanfland, H. Beister, K. Syassen, Phys. Rev. B 39, 12598 (1998)

    Article  ADS  Google Scholar 

  31. P.K. Tyagi, A. Misra, M.K. Singh, D.S. Misra, J. Ghatak, P.V. Satyam, F. Le Normand, Appl. Phys. Lett. 86, 253110 (2005)

    Article  ADS  Google Scholar 

  32. S. Klotz, J.-C. Chervin, P. Munch, G. LeMarchand, J. Phys. D: Appl. Phys. 42, 075413 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Cambedouzou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cambedouzou, J., Heresanu, V., Castro, C. et al. X-ray diffraction study of the evolution of Fe-filled multiwalled carbon nanotubes under pressure. Eur. Phys. J. B 72, 145–151 (2009). https://doi.org/10.1140/epjb/e2009-00329-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2009-00329-6

PACS

Navigation