Advertisement

Polar phonon mixing in magnetoelectric EuTiO3

  • V. Goian
  • S. Kamba
  • J. Hlinka
  • P. Vaněk
  • A. A. Belik
  • T. Kolodiazhnyi
  • J. Petzelt
Topical issue on Magnetoelectric Interaction Phenomena in Crystals

Abstract

Infrared reflectivity spectra of antiferromagnetic incipient ferroelectric EuTiO3 were investigated up to 600 K. Three polar phonons typical for the cubic perovskite \(Pm\bar {3}m\) structure were observed. Analysis of phonon plasma frequencies showed that the lowest-energy TO1 phonon corresponds predominantly to the Slater mode describing vibration of Ti cations against the oxygen octahedra and the TO2 phonon expresses vibrations of the Eu cation against the TiO6 octahedra. The highest frequency TO4 phonon represents O-octahedra bending. Incipient ferroelectric behavior of the permittivity is caused by pronounced softening of the TO1 phonon, which is coupled to the TO2 mode. Although the Eu cations are not involved in the TO1 mode, the spin ordering of the 4f electrons at Eu cations has influence on the frequency of the TO1 mode due to Eu-O-Eu super-exchange interaction. This is probably responsible for the 7% change of the permittivity induced by the magnetic field in the antiferromagnetic phase, as reported by Katsufuji and Takagi [Phys. Rev. B 64, 054415 (2001)].

PACS

78.30.-j Infrared and Raman spectra 77.22.-d Dielectric properties of solids and liquids 75.80.+q Magnetomechanical and magnetoelectric effects, magnetostriction 

References

  1. 1.
    M. Fiebig, J. Phys. D 38, R123 (2005)CrossRefADSGoogle Scholar
  2. 2.
    S.-W. Cheong, M. Mostovoy, Nature Mater. 6, 13 (2007)CrossRefADSGoogle Scholar
  3. 3.
    T. Kimura, T. Goto, H. Shintani, K. Ishizaka, T. Arima, Y. Tokura, Nature 426, 55 (2003)CrossRefADSGoogle Scholar
  4. 4.
    T. Goto, T. Kimura, G. Lawes, A.P. Ramirez, Y. Tokura, Phys. Rev. Lett. 92, 257201 (2004)CrossRefADSGoogle Scholar
  5. 5.
    T. Kimura, Annu. Rev. Mater. Res. 37, 387 (2007)CrossRefGoogle Scholar
  6. 6.
    S. Kamba, D. Nuzhnyy, M. Savinov, J. Šebek, J. Petzelt, J. Prokleška, R. Haumont, J. Kreisel, Phys. Rev. B 75, 024403 (2007)CrossRefADSGoogle Scholar
  7. 7.
    Maglione, J. Phys.: Condens. Matter 20, 322202 (2008)CrossRefGoogle Scholar
  8. 8.
    T. Katsufuji, H. Takagi, Phys. Rev. B 64, 054415 (2001)CrossRefADSGoogle Scholar
  9. 9.
    T.R. McGuire et al., J. Appl. Phys. 37, 981 (1966)CrossRefADSGoogle Scholar
  10. 10.
    J. Brous, I. Fankuchen, E. Banks, Acta Crystallogr. 6, 67 (1953)CrossRefGoogle Scholar
  11. 11.
    M.W. Shafer, J. Appl. Phys. 36, 1145 (1965)CrossRefADSGoogle Scholar
  12. 12.
    D.L. Janes, R.E. Bodnar, A.L. Taylor, J. Appl. Phys. 49, 1452 (1978)CrossRefADSGoogle Scholar
  13. 13.
    S. Kamba, D. Nuzhnyy, P. Vaněk, M. Savinov, K. Knížzek, Z. Shen, E. Šantavá, K. Maca, M. Sadowski, J. Petzelt, Europhys. Lett. 80, 27002 (2007)CrossRefADSGoogle Scholar
  14. 14.
    J.C. Fennie, K. Rabe, Phys. Rev. Lett. 97, 267602 (2006)CrossRefADSGoogle Scholar
  15. 15.
    Hlinka, J. Petzelt, S. Kamba, D. Noujni, T. Ostapchuk, Phase Transitions 79, 41 (2006)CrossRefGoogle Scholar
  16. 16.
    W. Cochran, Phys. Rev. Lett. 3, 412 (1959)CrossRefADSGoogle Scholar
  17. 17.
    J.H. Barrett, Phys. Rev. 86, 118 (1952)CrossRefADSGoogle Scholar
  18. 18.
    W. Zhong, R.D. King-Smith, D. Vanderbilt, Phys. Rev. Lett. 72, 3618 (2004)CrossRefADSGoogle Scholar
  19. 19.
    S. Kamba, V. Goian, D. Nuzhnyy, M. Orlita, J.H. Lee, D.G. Schlom, C.J. Fennie, V. Bovtun, B. Dkhil, M. Kempa, E. Šantavá, J. Petzelt, to be publishedGoogle Scholar
  20. 20.
    D. Nuzhnyy, J. Petzelt, S. Kamba, T. Yamada, M. Tyunina, A.K. Tagantsev, J. Levoska, N. Setter, J. Electroceram. 22, 297 (2009)CrossRefGoogle Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • V. Goian
    • 1
  • S. Kamba
    • 1
  • J. Hlinka
    • 1
  • P. Vaněk
    • 1
  • A. A. Belik
    • 2
  • T. Kolodiazhnyi
    • 3
  • J. Petzelt
    • 1
  1. 1.Institute of Physics, ASCRPrague 8Czech Republic
  2. 2.International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS)IbarakiJapan
  3. 3.Optronic Materials Center (OMC), National Institute for Materials Science (NIMS)IbarakiJapan

Personalised recommendations