The European Physical Journal B

, Volume 69, Issue 4, pp 529–538 | Cite as

Modeling spatio-temporal field evolution

Statistical and Nonlinear Physics


Prediction of spatio-temporal field evolution is based on the extraction of a physical law from joint experimental data. This extraction is usually described by a set of differential equations. If the only source of information is a field record, a method of field generators based on nonparametric modeling by conditional average can successfully replace differential equations. In this article we apply the method of field generators to a two-dimensional chaotic field record that describes the asynchronous motion of high-amplitude striations. We show how to choose the model structure in order to optimize the quality of the prediction process.


06.20.Dk Measurement and error theory 02.50.-r Probability theory, stochastic processes, and statistics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. I. Grabec, W. Sachse, Synergetics of Measurement, Prediction and Control (Springer-Verlag, Berlin, 1997) Google Scholar
  2. J.C.G. Lesurf, Information and Measurement (Institute of Physics Publishing, Bristol, 2002) Google Scholar
  3. I. Grabec, Eur. Phys. J. B 22, 129 (2001) Google Scholar
  4. I. Grabec, Eur. Phys. J. B 48, 279 (2005) Google Scholar
  5. M. Casdagli, S. Eubank, Nonlinear Modeling and Forecasting (Santa Fe Institute: Addison-Wesley, Reading, 1992) Google Scholar
  6. H.D.I. Abarbanel, R. Brown, J.J. Sidorowich, L.S. Tsimring, Rev. Mod. Phys. 65, 1331 (1993) Google Scholar
  7. E.J. Kostelich, T. Schreiber, Phys. Rev. E 48, 1752 (1993) Google Scholar
  8. H. Kantz, T. Schreiber, Nonlinear Time Series Analysis (Cambridge University Press, 1997) Google Scholar
  9. S. Siegert, R. Friedrich, J. Peinke, Phys. Lett. A 243, 275 (1998) Google Scholar
  10. R. Friedrich, S. Siegert, J. Peinke, St. Lück, M. Siefert, M. Lindemann, J. Raethjen, G. Deuschl, G. Pfister, Phys. Lett. A 271, 217 (2000) Google Scholar
  11. A.K. Alparslan, M. Sayar, A.R. Atilgan, Phys. Rev. E 58, 2640 (1998) Google Scholar
  12. C.R. Shalizi, e-print arXiv:math/0305160v2 Google Scholar
  13. D.M. Rubin, Chaos 2, 525 (1992) Google Scholar
  14. I. Grabec, S. Mandelj, Biological and Artificial Computation: From Neuroscience to Technology: Proc., edited by J. Mira, R. Moreno-Diaz, J. Cebestany, Lecture Notes in Computer Science (Springer-Verlag, Berlin) 1240, 597 (1997) Google Scholar
  15. S. Ørstavik, J. Stark, Phys. Lett. A 247, 145 (1998) Google Scholar
  16. U. Parlitz, C. Merkwirth, Phys. Rev. Lett. 84, 1890 (2000) Google Scholar
  17. S. Mandelj, I. Grabec, E. Govekar, CIRP J. Manuf. Syst. 30, 281 (2000) Google Scholar
  18. L.Z. Guo, S.S. Mei, S.A. Billings, Int. J. Syst. Sci. 28, 1 (2007) Google Scholar
  19. L.Z. Guo, S.A. Billings, IEEE T. Automat. Contr. 52, 622 (2007) Google Scholar
  20. C. Lopez, A. Alvarez, E. Hernandez-Garcia, Phys. Rev. Lett. 85, 2300 (2000) Google Scholar
  21. G. Francisco, P. Muruganandam, Phys. Rev. E 67, 066204 (2003) Google Scholar
  22. P. Muruganandam, G. Francisco, Pramana J. Phys. 64, 381 (2005) Google Scholar
  23. P. Stinis, Multiscale Model. Simul. 2, 580 (2004) Google Scholar
  24. S. Caires, J.A. Ferreira, Stat. Infer. Stoch. Process 8, 151 (2005) Correction 9, 109 (2006)Google Scholar
  25. S. Mandelj, I. Grabec, E. Govekar, Int. Jour. Bifur. Chaos 14, 2011 (2004) Google Scholar
  26. J. Ramsay, G. Hooker, D. Campbell, J. Cao, J. Roy. Stat. Soc. B 69, 741 (2007) Google Scholar
  27. F.C. Richards, T.P. Meyer, N.H. Packard, Physica D 45, 189 (1990) Google Scholar
  28. H. Jänicke, A. Wiebel, G. Scheuermann, W. Kollmann, IEEE T. Vis. Comput. Gr. 13, 1384 (2007) Google Scholar
  29. C.R. Shalizi, R. Haslinger, J.-B. Rouquier, K.L. Klinkner, C. Moore, Phys. Rev. E 73, 036104 (2006) Google Scholar
  30. C.R. Shalizi, K.L. Shalizi, R. Haslinger, Phys. Rev. Lett. 93, 118701-1 (2004) Google Scholar
  31. L. Ljung, System Identification – Theory for the User, 2nd edn. (Prentice-Hall, New Jersey, 1999) Google Scholar
  32. A. Borštnik Bračič, E. Govekar, I. Grabec, DCDIS A Supplement, Advances in Neural Networks 14(S1), 227 (2007) Google Scholar
  33. S.K. Sahu, K.V. Mardia, J. Roy. Stat. Soc. C-APP 54, 223 (2005) Google Scholar
  34. I.L. Dryden, L. Markus, C.C. Taylor, J. Kovacs, J. Roy. Stat. Soc. C-APP 54, 673 (2005) Google Scholar
  35. E.A. Nadaraya, Theory Probab. Appl. 9, 141 (1964) Google Scholar
  36. H.U. Voss, M.J. Bünner, M. Abel, Phys. Rev. E 57, 2820 (1998) Google Scholar
  37. M. Bär, R. Hegger, H. Kantz, Phys. Rev. E 59, 337 (1999) Google Scholar
  38. H.U. Voss, P. Kolodner, M. Abel, J. Kurths, Phys. Rev. Lett. 83 3422 (1999) Google Scholar
  39. R.O. Duda, P.E. Hart, Pattern Classification and Scene Analysis (J. Wiley and Sons, New York, 1973), Chap. 4 Google Scholar
  40. D. Bosq, Nonparametric Statistics for Stochastic Processes: Estimation and Prediction, 2nd edn. (Springer-Verlag, Berlin, 1998) Google Scholar
  41. L. Wasserman, All of Nonparametric Statistics (Springer-Verlag, New York, 2005) Google Scholar
  42. I. Grabec, e-print arXiv:0704.0162 Google Scholar
  43. S. Haykin, Neural Networks: A Comprehensive Foundation, 2nd edn. (Macmillan College Publishing Company, New York, 1999) Google Scholar
  44. I. Grabec, I. Ferkolj, D. Grabec, D. Grošelj, DCDIS A Supplement, Advances in Neural Networks 14(S1), 602 (2007) Google Scholar
  45. I. Grabec, S. Mandelj, Phys. Lett. A 287, 105 (2001) Google Scholar

Copyright information

© EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Faculty of Mechanical EngineeringUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations