The European Physical Journal B

, Volume 65, Issue 2, pp 195–206 | Cite as

Photon emission induced by elastic exciton-carrier scattering in semiconductor quantum wells

  • H. Ouerdane
  • R. Varache
  • M. E. Portnoi
  • I. Galbraith
Solid State and Materials


We present a study of the elastic exciton-electron (X-e) and exciton-hole (X-h) scattering processes in semiconductor quantum wells, including fermion exchange effects. The balance between the exciton and the free carrier populations within the electron-hole plasma is discussed in terms of ionization degree in the nondegenerate regime. Assuming a two-dimensional Coulomb potential statically screened by the free carrier gas, we apply the variable phase method to obtain the excitonic wavefunctions, which we use to calculate the 1s exciton-free carrier matrix elements that describe the scattering of excitons into the light cone where they can radiatively recombine. The photon emission rates due to the carrierassisted exciton recombination in semiconductor quantum-wells (QWs) at room temperature and in a low density regime are obtained from Fermi’s golden rule, and studied for mid-gap and wide-gap materials. The quantitative comparison of the direct and exchange terms of the scattering matrix elements shows that fermion exchange is the dominant mechanism of the exciton-carrier scattering process. This is confirmed by our analysis of the rates of photon emission induced by electron-assisted and hole-assisted exciton recombinations.


71.35.-y Excitons and related phenomena 78.55.-m Photoluminescence, properties and materials 78.55.Cr III-V semiconductors 78.55.Et II-VI semiconductors 78.67.De Quantum wells 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Combescot, O. B.-Matibet, Phys. Rev. Lett. 93, 016403 (2004)CrossRefADSGoogle Scholar
  2. 2.
    M. Combescot, O. B.-Matibet, R. Combescot, Phys. Rev. B 75, 174305 (2007)CrossRefADSGoogle Scholar
  3. 3.
    C. Benoit à la Guillaume, J.M. Debever, F. Salvan, Phys. Rev. 177, 567 (1969)CrossRefADSGoogle Scholar
  4. 4.
    H. Haug, S. Koch, Phys. Status Solidi (b) 82, 531 (1977)CrossRefGoogle Scholar
  5. 5.
    S. Koch, H. Haug, G. Schmieder, W. Bohnert, C. Klingshirn, Phys. Status Solidi (b) 89, 431 (1978)CrossRefGoogle Scholar
  6. 6.
    Y.-P. Feng, H.N. Spector, J. Phys. Chem. Solids 48, 593 (1987)CrossRefADSGoogle Scholar
  7. 7.
    C.H. Henry, R.A. Logan, F.R. Merrit, J. Appl. Phys. 51, 3042 (1980)CrossRefADSGoogle Scholar
  8. 8.
    S.S.-Rink, C. Ell, H. Haug, Phys. Rev. B 33, 1183 (1986)CrossRefADSGoogle Scholar
  9. 9.
    J.I. Kusano, Y. Segawa, Y. Aoyagi, S. Namba, H. Okamoto, Phys. Rev. B 40, 1685 (1989)CrossRefADSGoogle Scholar
  10. 10.
    J. Christen, D. Bimberg, Phys. Rev. B 42, 7213 (1990)CrossRefADSGoogle Scholar
  11. 11.
    M. Gurioli, A. Vinattieri, M. Colocci, C. Deparis, J. Massies, G. Neu, A. Bosacchi, S. Franchi, Phys. Rev. B 44, 3115 (1991)CrossRefADSGoogle Scholar
  12. 12.
    P. Blood, A.I. Kucharska, J.P. Jacobs, K. Griffiths, J. Appl. Phys. 70, 1144 (1991)CrossRefADSGoogle Scholar
  13. 13.
    Hot carriers in semiconductors nanostructures: physics and applications edited by J. Shah (Academic Press, San Diego, 1992)Google Scholar
  14. 14.
    P.W.M. Blom, P.J. van Hall, C. Smit, J.P. Cuypers, J.H. Wolter, Phys. Rev. Lett 71, 3878 (1993)CrossRefADSGoogle Scholar
  15. 15.
    I. Galbraith, S.W. Koch, J. Crystal Growth. 159, 667 (1996)CrossRefADSGoogle Scholar
  16. 16.
    S. Nüsse, P.H. Bolivar, H. Kurz, V. Klimov, F. Levy, Phys. Rev. B 56, 4578 (1997)CrossRefADSGoogle Scholar
  17. 17.
    M. Kira, F. Jahnke, S.W. Koch, Phys. Rev. Lett. 81, 3263 (1998)CrossRefADSGoogle Scholar
  18. 18.
    M. Kira, F. Jahnke, W. Hoyer, S.W. Koch, Prog. Quantum Electron. 23, 189 (1999)CrossRefADSGoogle Scholar
  19. 19.
    I. Galbraith et al., Phys. Rev. B 71, 073302 (2005)CrossRefADSGoogle Scholar
  20. 20.
    S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H.M. Gibbs, W. Hoyer, M. Kira, S.W. Koch, J.P. Prineas, H. Stolz, Phys. Rev. Lett. 92, 067402 (2004)CrossRefADSGoogle Scholar
  21. 21.
    J. Szczytko, L. Kappei, J. Berney, F.M-Genoud, M.T. Portella-Oberli, B. Deveaud, Phys. Rev. B 71, 195313 (2005)CrossRefADSGoogle Scholar
  22. 22.
    M. Nakayama, H. Tanaka, M. Ando, T. Uemura, Appl. Phys. Lett. 89, 031909 (2006)CrossRefADSGoogle Scholar
  23. 23.
    R. Kubo, J. Phys. Soc. Jpn 12, 570 (1957)CrossRefADSMathSciNetGoogle Scholar
  24. 24.
    P.C. Martin, J. Schwinger, Phys. Rev. 115, 1342 (1959)MATHCrossRefADSMathSciNetGoogle Scholar
  25. 25.
    W. Kraeft, K. Killiman, D. Kremp, Phys. Status Solidi (b) 72, 461 (1975)CrossRefGoogle Scholar
  26. 26.
    R. Zimmermann, H. Stolz, Phys. Status Solidi (b) 131, 151 (1985)CrossRefGoogle Scholar
  27. 27.
    W. Kraeft, D. Kremp, W. Ebeling, G. Röpke, Quantum Statistics of Charged Particle Systems (Plenum, New York 1986)Google Scholar
  28. 28.
    R. Zimmermann, Many-particle theory of highly excited semiconductors (Teubner, Berlin, 1988)Google Scholar
  29. 29.
    M.E. Portnoi, I. Galbraith, Phys. Rev. B 58, 3963 (1998)CrossRefADSGoogle Scholar
  30. 30.
    M.E. Portnoi, I. Galbraith, Phys. Rev. B 60, 5570 (1999)CrossRefADSGoogle Scholar
  31. 31.
    V.V. Nikolaev, M.E. Portnoi, Superlatt. Microstruct. 43, 460 (2008)CrossRefADSGoogle Scholar
  32. 32.
    A. Kavokin, G. Malpuech, Cavity polaritons, Chap. 4 (Elsevier, 2003)Google Scholar
  33. 33.
    F. Calogero, Variable Phase Approach to Potential Scattering (Academic Press, 1967)Google Scholar
  34. 34.
    K. Huang, Statistical Mechanics (John Wiley & Sons 1987)Google Scholar
  35. 35.
    F. Stern, W.E. Howard, Phys. Rev. 163, 816 (1967)CrossRefADSGoogle Scholar
  36. 36.
    M. Abramovitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publication, New York, 1972)Google Scholar
  37. 37.
    I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1980)MATHGoogle Scholar
  38. 38.
    G. Ramon, A. Mann, E. Cohen, Phys. Rev. B 67, 045323 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  • H. Ouerdane
    • 1
    • 4
  • R. Varache
    • 1
  • M. E. Portnoi
    • 2
  • I. Galbraith
    • 3
  1. 1.LASMEAUMR CNRS-Université Blaise Pascal 6602Aubière CedexFrance
  2. 2.School of PhysicsUniversity of ExeterExeterUK
  3. 3.Physics, School of Engineering and Physical SciencesHeriot-Watt UniversityEdinburghUK
  4. 4.CIMAPUMR CEA-CNRS-ENSICAEN-Univ. de Caen Basse NormandieCaenFrance

Personalised recommendations