Skip to main content
Log in

Photon emission induced by elastic exciton-carrier scattering in semiconductor quantum wells

  • Solid State and Materials
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We present a study of the elastic exciton-electron (X-e) and exciton-hole (X-h) scattering processes in semiconductor quantum wells, including fermion exchange effects. The balance between the exciton and the free carrier populations within the electron-hole plasma is discussed in terms of ionization degree in the nondegenerate regime. Assuming a two-dimensional Coulomb potential statically screened by the free carrier gas, we apply the variable phase method to obtain the excitonic wavefunctions, which we use to calculate the 1s exciton-free carrier matrix elements that describe the scattering of excitons into the light cone where they can radiatively recombine. The photon emission rates due to the carrierassisted exciton recombination in semiconductor quantum-wells (QWs) at room temperature and in a low density regime are obtained from Fermi’s golden rule, and studied for mid-gap and wide-gap materials. The quantitative comparison of the direct and exchange terms of the scattering matrix elements shows that fermion exchange is the dominant mechanism of the exciton-carrier scattering process. This is confirmed by our analysis of the rates of photon emission induced by electron-assisted and hole-assisted exciton recombinations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Combescot, O. B.-Matibet, Phys. Rev. Lett. 93, 016403 (2004)

    Article  ADS  Google Scholar 

  2. M. Combescot, O. B.-Matibet, R. Combescot, Phys. Rev. B 75, 174305 (2007)

    Article  ADS  Google Scholar 

  3. C. Benoit à la Guillaume, J.M. Debever, F. Salvan, Phys. Rev. 177, 567 (1969)

    Article  ADS  Google Scholar 

  4. H. Haug, S. Koch, Phys. Status Solidi (b) 82, 531 (1977)

    Article  Google Scholar 

  5. S. Koch, H. Haug, G. Schmieder, W. Bohnert, C. Klingshirn, Phys. Status Solidi (b) 89, 431 (1978)

    Article  Google Scholar 

  6. Y.-P. Feng, H.N. Spector, J. Phys. Chem. Solids 48, 593 (1987)

    Article  ADS  Google Scholar 

  7. C.H. Henry, R.A. Logan, F.R. Merrit, J. Appl. Phys. 51, 3042 (1980)

    Article  ADS  Google Scholar 

  8. S.S.-Rink, C. Ell, H. Haug, Phys. Rev. B 33, 1183 (1986)

    Article  ADS  Google Scholar 

  9. J.I. Kusano, Y. Segawa, Y. Aoyagi, S. Namba, H. Okamoto, Phys. Rev. B 40, 1685 (1989)

    Article  ADS  Google Scholar 

  10. J. Christen, D. Bimberg, Phys. Rev. B 42, 7213 (1990)

    Article  ADS  Google Scholar 

  11. M. Gurioli, A. Vinattieri, M. Colocci, C. Deparis, J. Massies, G. Neu, A. Bosacchi, S. Franchi, Phys. Rev. B 44, 3115 (1991)

    Article  ADS  Google Scholar 

  12. P. Blood, A.I. Kucharska, J.P. Jacobs, K. Griffiths, J. Appl. Phys. 70, 1144 (1991)

    Article  ADS  Google Scholar 

  13. Hot carriers in semiconductors nanostructures: physics and applications edited by J. Shah (Academic Press, San Diego, 1992)

    Google Scholar 

  14. P.W.M. Blom, P.J. van Hall, C. Smit, J.P. Cuypers, J.H. Wolter, Phys. Rev. Lett 71, 3878 (1993)

    Article  ADS  Google Scholar 

  15. I. Galbraith, S.W. Koch, J. Crystal Growth. 159, 667 (1996)

    Article  ADS  Google Scholar 

  16. S. Nüsse, P.H. Bolivar, H. Kurz, V. Klimov, F. Levy, Phys. Rev. B 56, 4578 (1997)

    Article  ADS  Google Scholar 

  17. M. Kira, F. Jahnke, S.W. Koch, Phys. Rev. Lett. 81, 3263 (1998)

    Article  ADS  Google Scholar 

  18. M. Kira, F. Jahnke, W. Hoyer, S.W. Koch, Prog. Quantum Electron. 23, 189 (1999)

    Article  ADS  Google Scholar 

  19. I. Galbraith et al., Phys. Rev. B 71, 073302 (2005)

    Article  ADS  Google Scholar 

  20. S. Chatterjee, C. Ell, S. Mosor, G. Khitrova, H.M. Gibbs, W. Hoyer, M. Kira, S.W. Koch, J.P. Prineas, H. Stolz, Phys. Rev. Lett. 92, 067402 (2004)

    Article  ADS  Google Scholar 

  21. J. Szczytko, L. Kappei, J. Berney, F.M-Genoud, M.T. Portella-Oberli, B. Deveaud, Phys. Rev. B 71, 195313 (2005)

    Article  ADS  Google Scholar 

  22. M. Nakayama, H. Tanaka, M. Ando, T. Uemura, Appl. Phys. Lett. 89, 031909 (2006)

    Article  ADS  Google Scholar 

  23. R. Kubo, J. Phys. Soc. Jpn 12, 570 (1957)

    Article  ADS  MathSciNet  Google Scholar 

  24. P.C. Martin, J. Schwinger, Phys. Rev. 115, 1342 (1959)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  25. W. Kraeft, K. Killiman, D. Kremp, Phys. Status Solidi (b) 72, 461 (1975)

    Article  Google Scholar 

  26. R. Zimmermann, H. Stolz, Phys. Status Solidi (b) 131, 151 (1985)

    Article  Google Scholar 

  27. W. Kraeft, D. Kremp, W. Ebeling, G. Röpke, Quantum Statistics of Charged Particle Systems (Plenum, New York 1986)

    Google Scholar 

  28. R. Zimmermann, Many-particle theory of highly excited semiconductors (Teubner, Berlin, 1988)

    Google Scholar 

  29. M.E. Portnoi, I. Galbraith, Phys. Rev. B 58, 3963 (1998)

    Article  ADS  Google Scholar 

  30. M.E. Portnoi, I. Galbraith, Phys. Rev. B 60, 5570 (1999)

    Article  ADS  Google Scholar 

  31. V.V. Nikolaev, M.E. Portnoi, Superlatt. Microstruct. 43, 460 (2008)

    Article  ADS  Google Scholar 

  32. A. Kavokin, G. Malpuech, Cavity polaritons, Chap. 4 (Elsevier, 2003)

  33. F. Calogero, Variable Phase Approach to Potential Scattering (Academic Press, 1967)

  34. K. Huang, Statistical Mechanics (John Wiley & Sons 1987)

  35. F. Stern, W.E. Howard, Phys. Rev. 163, 816 (1967)

    Article  ADS  Google Scholar 

  36. M. Abramovitz, I.A. Stegun, Handbook of Mathematical Functions (Dover Publication, New York, 1972)

    Google Scholar 

  37. I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products (Academic Press, New York, 1980)

    MATH  Google Scholar 

  38. G. Ramon, A. Mann, E. Cohen, Phys. Rev. B 67, 045323 (2003)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ouerdane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouerdane, H., Varache, R., Portnoi, M.E. et al. Photon emission induced by elastic exciton-carrier scattering in semiconductor quantum wells. Eur. Phys. J. B 65, 195–206 (2008). https://doi.org/10.1140/epjb/e2008-00355-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2008-00355-x

PACS

Navigation