Advertisement

The European Physical Journal B

, Volume 65, Issue 2, pp 155–178 | Cite as

Topological objects in two-gap superconductor

  • Y. M. Cho
  • P. M. Zhang
Solid State and Materials

Abstract

We discuss the non-Abelian topological objects, in particular the non-Abrikosov vortex and the magnetic knot made of the twisted non-Abrikosov vortex, in two-gap superconductor. We show that there are two types of non-Abrikosov vortex in Ginzburg-Landau theory of two-gap superconductor, the D-type which has no concentration of the condensate at the core and the N-type which has a non-trivial profile of the condensate at the core, under a wide class of realistic interaction potential. We prove that these non-Abrikosov vortices can have either integral or fractional magnetic flux, depending on the interaction potential. We show that they are described by the non-Abelian topology π2(S 2) and π1(S 1), in addition to the well-known Abelian topology π1(S 1). Furthermore, we discuss the possibility to construct a stable magnetic knot in two-gap superconductor by twisting the non-Abrikosov vortex and connecting two periodic ends together, whose knot topology π3(S 2) is described by the Chern-Simon index of the electromagnetic potential. We argue that similar topological objects may exist in multi-gap or multi-layer superconductors and multi-component Bose-Einstein condensates and superfluids, and discuss how these topological objects can be constructed in MgB2, Sr2RuO4, 3He, and liquid metallic hydrogen.

PACS

74.20.-z Theories and models of superconducting state 74.20.De Phenomenological theories (two-fluid, Ginzburg-Landau, etc.) 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons, resonating valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.) 74.90.+n Other topics in superconductivity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.A.M. Dirac, Proc. Roy. Soc. A 113, 60 (1931); P.A.M. Dirac, Phys. Rev. 74, 817 (1948)ADSGoogle Scholar
  2. 2.
    A. Abrikosov, Sov. Phys. JETP 5, 1174 (1957); H. Nielsen, P. Olesen, Nucl. Phys. 61, 45 (1973)Google Scholar
  3. 3.
    T.H.R. Skyrme, Proc. Roy. Soc. (London) 260, 127 (1961); T.H.R. Skyrme, Proc. Roy. Soc. 262, 237 (1961); T.H.R. Skyrme, Nucl. Phys. 31, 556 (1962)MATHCrossRefADSMathSciNetGoogle Scholar
  4. 4.
    L. Faddeev, A. Niemi, Nature 387, 58 (1997); J. Gladikowski, M. Hellmund, Phys. Rev. D 56, 5194 (1997); R. Battye, P. Sutcliffe, Phys. Rev. Lett. 81, 4798 (1998)CrossRefADSGoogle Scholar
  5. 5.
    Y.M. Cho, Phys. Rev. Lett. 87, 252001 (2001)CrossRefADSGoogle Scholar
  6. 6.
    Y.M. Cho, Phys. Lett. B 603, 88 (2004); Y.M. Cho, B.S. Park, P. Zhang, Int. J. Mod. Phys. A 23, 267 (2008)CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    C. Myatt et al., Phys. Rev. Lett. 78, 586 (1997); D. Stamper-Kurn et al., Phys. Rev. Lett. 80, 2027 (1998)CrossRefADSGoogle Scholar
  8. 8.
    J. Nagamatsu et al., Nature 410, 63 (2001); S.L. Bud’ko et al., Phys. Rev. Lett. 86, 1877 (2001); C.U. Jung et al., Appl. Phys. Lett. 78, 4157 (2001)CrossRefADSGoogle Scholar
  9. 9.
    Y.M. Cho, e-print arXiv:cond-mat/0112325; Int. J. Pure Appl. Phys. 1, 246 (2005); Y.M. Cho, N.S. Yong, e-print arXiv: cond-mat/0308182, Int. J. Pure Appl. Phys. 2, in pressGoogle Scholar
  10. 10.
    H. Stoof et al., Phys. Rev. Lett. 87, 120407 (2001); C. Savage, J. Ruostekoski, Phys. Rev. Lett. 91, 010403 (2003)CrossRefADSGoogle Scholar
  11. 11.
    Y.M. Cho, H. Khim, P. Zhang, Phys. Rev. A 72, 063603 (2005)CrossRefADSGoogle Scholar
  12. 12.
    E. Babaev, L. Faddeev, A. Niemi, Phys. Rev. B 65, 100512 (2002)CrossRefADSGoogle Scholar
  13. 13.
    Y.M. Cho, e-print arXiv:cond-mat/0112498; Phys. Rev. B 72, 212516 (2005)CrossRefADSGoogle Scholar
  14. 14.
    Y.M. Cho, e-print arXiv:cond-mat/0311201, Phys. Rev. B 73, 180506(R) (2006)CrossRefADSGoogle Scholar
  15. 15.
    M. Salomma, G. Volovik, Rev. Mod. Phys. 59, 533 (1987); G. Volovik, The Universe in a Helium Droplet (Clarendon Press, Oxford, 2003). See also A. Leggett, Rev. Mod. Phys. 47, 331 (1975)CrossRefADSGoogle Scholar
  16. 16.
    Y. Kondo et al., Phys. Rev. Lett. 67, 81 (1991)CrossRefADSGoogle Scholar
  17. 17.
    A. Leggett, Prog. Theo. Phys. 36, 901 (1966)CrossRefADSGoogle Scholar
  18. 18.
    Y. Izyumov, V. Laptev, Phase Transition 20, 95 (1990); M. Zhitomirsky, J. Phys. Soc. Jpn 64, 913 (1995); E, Pechenik, B. Rosenstein, B. Sapiro, I. Sapiro, Phys. Rev. B 65, 214532 (2002). See also M. Sigrist, K. Ueda, Rev. Mod. Phys. 63, 239 (1991)CrossRefGoogle Scholar
  19. 19.
    M. Zhitomirsky, V. Dao, Phys. Rev. B 69, 054508 (2004)CrossRefADSGoogle Scholar
  20. 20.
    E. Babaev, Phys. Rev. Lett. 89, 067001 (2002)CrossRefADSGoogle Scholar
  21. 21.
    Y. Tanaka, Phys. Rev. Lett. 88, 017002 (2002); A. Gurevich, Phys. Rev. B 67, 184515 (2003)CrossRefADSGoogle Scholar
  22. 22.
    M. Eskildsen et al., Phys. Rev. Lett. 89, 187003 (2002); A. Koshelev, A. Golubov, Phys. Rev. Lett. 90, 177002 (2003)CrossRefADSGoogle Scholar
  23. 23.
    K. Kasamatsu, M. Tsubota, M. Ueda, Phys. Rev. Lett. 93, 250406 (2004); K. Kasamatsu, M. Tsubota, M. Ueda, Phys. Rev. A 71, 043611 (2005)CrossRefADSGoogle Scholar
  24. 24.
    D. Ivanov, Phys. Rev. Lett. 86, 268 (2001); S. Chung, H. Blum, E. Kim, Phys. Rev. Lett. 99, 197002 (2007). For a review, see A. Mackenzie, Y. Maeno, Rev. Mod. Phys. 75, 657 (2003)CrossRefADSGoogle Scholar
  25. 25.
    V. Dolocan et al., Phys. Rev. Lett. 95, 097004 (2005); H. Bluhm et al., Phys. Rev. Lett. 97, 237002 (2006); A. Crisan et al., Jpn J. App. Phys. 46, 451 (2007)CrossRefADSGoogle Scholar
  26. 26.
    Y.M. Cho, Phys. Lett. B 81, 25 (1979); Y.M. Cho, Phys. Lett. B 644, 208 (2007)CrossRefADSGoogle Scholar
  27. 27.
    Y.M. Cho, Phys. Rev. D 21, 1080 (1980); Y.M. Cho, Phys. Rev. D 62, 074009 (2000)CrossRefADSMathSciNetGoogle Scholar
  28. 28.
    Y.M. Cho, Phys. Rev. Lett. 46, 302 (1981); Phys. Rev. D 23, 2415 (1981); W.S. Bae, Y.M. Cho, S.W. Kimm, Phys. Rev. D 65, 025005 (2002)CrossRefADSGoogle Scholar
  29. 29.
    N.D. Mermin, T.L. Ho, Phys. Rev. Lett. 36, 594 (1976)CrossRefADSGoogle Scholar
  30. 30.
    E. Simanek, Phys. Rev. B 74, 052501 (2006)CrossRefADSGoogle Scholar
  31. 31.
    K. Huang, R. Tipton, Phys. Rev. D 23, 3050 (1981)CrossRefADSGoogle Scholar
  32. 32.
    N. Ashcroft, Phys. Rev. Lett. 92, 187002 (2004); E. Babaev, A. Sudbo, N. Ashcroft, Nature 431, 666 (2004); N. Ashcroft, Phys. Rev. Lett. 95, 105301 (2005)CrossRefADSGoogle Scholar
  33. 33.
    Y.M. Cho, Phys. Lett. B 616, 101 (2005)CrossRefADSGoogle Scholar
  34. 34.
    Y.K. Bang, Y.M. Cho, Pengming Zhang, to be publishedGoogle Scholar
  35. 35.
    P. Forgacs, S. Reuillon, M. Volkov, Phys. Rev. Lett. 96, 041601 (2006); P. Forgacs, S. Reuillon, M. Volkov, Nucl. Phys. B 751, 390 (2006)CrossRefADSGoogle Scholar

Copyright information

© Springer 2008

Authors and Affiliations

  1. 1.Center for Theoretical Physics and School of Physics, College of Natural SciencesSeoul National UniversitySeoulKorea
  2. 2.Institute of Modern PhysicsChinese Academy of SciencesLanzhouP. R. China

Personalised recommendations