The European Physical Journal B

, Volume 63, Issue 2, pp 239–243 | Cite as

Metastability and functional integration in anisotropically coupled map lattices

Statistical and Nonlinear Physics

Abstract.

Metastability is a property of systems composed of many interacting parts wherein the parts exhibit simultaneously a tendency to function autonomously (local segregation) and a tendency to cooperate (global integration). We study anisotropically coupled map lattices and discover that for specific values of the coupling control parameters the entire system transits to a metastable regime. We show that this regime manifests a quasi-stable state in which the system can flexibly switch to another such state. We briefly discuss the relevance of our findings for information processing, functional integration, metastability in the brain, and phase transitions in complex systems.

PACS.

05.45.Ra Coupled map lattices 64.60.My Metastable phases 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Albert, A.L. Barabási, Rev. Mod. Phys. 74, 47 (2002) CrossRefADSMathSciNetGoogle Scholar
  2. S. Boccaletti, V. Latora, Y. Moreno, M. Chavez, D. Hwang, Phys. Rep. 424, 175 (2006) CrossRefADSMathSciNetGoogle Scholar
  3. A.S. Pikovsky, M.G. Rosenblum, J. Kurths, Synchronization (Cambridge Press, 2001) Google Scholar
  4. J. Ito, K. Kaneko, Phys. Rev. E 67 (2003) Google Scholar
  5. A. Venaille, P. Varona, M. Rabinovich, Phys. Rev. E 71, (2005) Google Scholar
  6. T. Pereira, M. Baptista, J. Kurths, Eur. Phys. J. Special Topics 146, 155 (2007) CrossRefGoogle Scholar
  7. N. Masuda, K. Aihara, Biological Cybernetics 90, (2004) Google Scholar
  8. M. Ivancheko, G. Osipov, V. Shalfeev, J. Kurths, Phys. Rev. Lett. 93, (2004) Google Scholar
  9. G. Osipov, M. Ivancheko, J. Kurths, B. Hu, Phys. Rev. E 71 (2005) Google Scholar
  10. C. Zhou, L. Zemanova, G. Zamora, C. Hilgetag, J. Kurths, Phys. Rev. Lett. 97, (2006) Google Scholar
  11. L. Zemanova, C. Zhou, J. Kurths, Physica D 224, (2006) Google Scholar
  12. C. Honey, R. Kotter, M. Breakspear, O. Sporns, Proc. Natl. Acad. Sci. USA 104, 10240 (2007) CrossRefADSGoogle Scholar
  13. S.L. Bressler, J.A. Kelso, Trends in Cognitive Science 5, 26 (2001) CrossRefGoogle Scholar
  14. A. Fingelkurts, A. Fingelkurts, Int. J. Neurosc. 114, 843 (2004) CrossRefGoogle Scholar
  15. M.G. Werner, Proceedings The Evolution of Human Cognition and Neuroscience (Les Treilles, Provence, France, 2006) Google Scholar
  16. K. Kaneko, Prog. Theor. Phys. 72, 480 (1984) MATHCrossRefADSGoogle Scholar
  17. Y. Dobyns, H. Atmanspacher, Chaos, Solitons and Fractals 28, 755 (2006) MATHCrossRefMathSciNetGoogle Scholar
  18. W. McGill, IEEE Trans. Inform. Theory 4, 93 (1954) CrossRefMathSciNetGoogle Scholar
  19. G. Tononi, O. Sporns, G.M. Edelman, Proc. Natl. Acad. Sci. USA 91, 5033 (1994) CrossRefADSGoogle Scholar
  20. E. Schneidman, S. Still, M.J. Berry, W. Bialek, Phys. Rev. Lett. 91, 238701 (2003) CrossRefADSGoogle Scholar
  21. G. Tononi, O. Sporns, G.M. Edelman, Proc. Natl. Acad. Sci. USA 93, 3422 (1996) CrossRefADSGoogle Scholar
  22. F.C. Hoppensteadt, E.M. Izhikevich, Phys. Rev. E 62, 4010 (2000) CrossRefADSGoogle Scholar
  23. G. Tononi, O. Sporns, BMC Neurosc. 4, 31 (2003) CrossRefGoogle Scholar
  24. K. Doya, Neural Network 15, 495 (2002) CrossRefADSGoogle Scholar
  25. S. Dehaene, J. Changeux, Plos 3, 1 (2005) CrossRefGoogle Scholar
  26. E. Izhikevich, G. Edelman, PNAS 105, 3593 (2008) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.ERATO Synergistic Intelligence Project, JST, The University of TokyoTokyoJapan
  2. 2.Artificial Intelligence Lab, University of ZurichZurichSwitzerland
  3. 3.ISI Laboratory, Dept. of Mechano-Informatics, The University of TokyoTokyoJapan

Personalised recommendations