The European Physical Journal B

, Volume 62, Issue 4, pp 459–464 | Cite as

Generalization of a nonlinear friction relation for a dimer sliding on a periodic substrate

  • M. TiwariEmail author
  • S. Gonçalves
  • V. M. Kenkre
Mesoscopic and Nanoscale Systems


An atomic cluster moving along a solid surface can undergo dissipation of its translational energy through a direct mode, involving the coupling of the center-of-mass motion to thermal excitations of the substrate, and an indirect mode, due to damping of the internal motion of the cluster, to which the center-of-mass motion can be coupled as a result of surface potential. Focussing only on the less well understood indirect mode, on the basis of numerical solutions, we present, departures from a recently reported simple relationship between the force and velocity of nonlinear friction. A generalization of the analytic considerations that earlier led to that relationship is carried out and shown to explain the departures satisfactorily. Our generalization treats for the system considered (dimer sliding over a periodic substrate) the complete dependence on several of the key parameters, specifically internal dissipation, natural frequency, substrate corrugation, and length ratio. Further predictions from our generalizations are found to agree with new simulations. The system analyzed is relevant to nanostructures moving over crystal surfaces.


81.40.Pq Friction, lubrication, and wear 46.55.+d Tribology and mechanical contacts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. M. Urbakh, J. Klafter, D. Gourdon, J. Israelachvili, Nature (London) 430, 525 (2004) CrossRefADSGoogle Scholar
  2. B.N.J. Persson, Phys. Rev. B 48, 18140 (1993) CrossRefADSGoogle Scholar
  3. J. Krim, Surf. Sci 500, 741 (2002) CrossRefADSGoogle Scholar
  4. J.B. Sokoloff, Phys. Rev. B 42, 760 (1990) CrossRefADSGoogle Scholar
  5. A.S. Kovalev, A.I. Landau, Low Temp. Phys. 28, 423 (2002) CrossRefADSMathSciNetGoogle Scholar
  6. O.M. Braun, R. Ferrando, D.E. Tommei, Phys. Rev. E 68, 051101 (2003) CrossRefADSMathSciNetGoogle Scholar
  7. L. Consoli, H.J.F. Knops, A. Fasolino, Phys. Rev. Lett. 85, 302 (2000) CrossRefADSGoogle Scholar
  8. C.M. Mate, G.M. McClelland, R. Erlandsson, S. Chiang, Phys. Rev. Lett. 59, 1942 (1987) CrossRefADSGoogle Scholar
  9. E. Gnecco, R. Bennewitz, T. Gyalog, E. Meyer, J. Phys.: Condens. Matter 13, R619 (2001) Google Scholar
  10. S. Gonçalves, V.M. Kenkre, A.R. Bishop, Phys. Rev. B 70, 195415 (2004) CrossRefADSGoogle Scholar
  11. S. Gonçalves, C. Fusco, A.R. Bishop, V.M. Kenkre, Phys. Rev. B 72, 195418 (2005) CrossRefADSGoogle Scholar
  12. C. Fusco, A. Fasolino, T. Janssen, Eur. Phys J. B 31, 95 (2003) CrossRefADSMathSciNetGoogle Scholar
  13. C. Fusco, A. Fasolino, Thin Solid Films 428, 34 (2003) CrossRefADSGoogle Scholar
  14. A.H. Romero, A.M. Lacasta, J.M. Sancho, Phys. Rev. E 69, 051105 (2004) CrossRefADSMathSciNetGoogle Scholar
  15. O.M. Braun, Phys. Rev. E 63, 011102 (2001) CrossRefADSGoogle Scholar
  16. S.Yu. Krylov, K.B. Jinesh, H. Valk, M. Dienwiebel, J.W.M. Frenken, Phys. Rev. E 71, 065101(R) (2005) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.Consortium of the Americas for Interdisciplinary Science and Department of Physics and AstronomyUniversity of New MexicoAlbuquerqueUSA
  2. 2.Instituto de Física, Universidade Federal do Rio Grande do SulPorto AlegreBrazil

Personalised recommendations