Advertisement

The European Physical Journal B

, Volume 62, Issue 3, pp 295–298 | Cite as

Thermodynamic model of metal-induced self-assembly of Ge quantum dots on Si substrates

Mesoscopic and Nanoscale Systems

Abstract.

We have investigated the nucleation thermodynamics and kinetics of the Ge quantum dot (QD) self-assembly on the Au-patterned Si substrates based on the surface chemical potential theory. It is find that the minimum chemical potential on the substrate surface is located at the center site of the square lattice constructed by Au islands, which indicates that the nucleation of QD is thermodynamically favorable at the center site. The nucleation probability of QD at the center site is kinetically calculated by the mechanochemical potential-based approach. The influence of the surface orientation of Si substrates on the QD shape is addressed by the surface chemical potential theory.

PACS.

64.60.Qb Nucleation 82.60.Nh Thermodynamics of nucleation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Stangl, V. Holy, G. Bauer, Rev. Mod. Phys. 76, 725 (2004) CrossRefADSGoogle Scholar
  2. G. Biasiol, E. Kapon, Phys. Rev. Lett. 81, 2962 (1998) CrossRefADSGoogle Scholar
  3. Z.Y. Zhong, A. Halilovic, M. Mühlberger, F. Schäffler, G. Bauer, Appl. Phys. Lett. 82, 445 (2003) CrossRefADSGoogle Scholar
  4. B. Yang, F. Liu, M.G. Lagally, Phys. Rev. Lett. 92, 025502 (2004) CrossRefADSGoogle Scholar
  5. Z.Y. Zhong, W. Schwinger, F. Schäffler, G. Bauer, G. Vastola, F. Montalenti, L. Miglio, Phys. Rev. Lett. 98, 176102 (2007) CrossRefADSGoogle Scholar
  6. Q.H. Xie, A. Madhukar, P. Chen, N.P. Kobayashi, Phys. Rev. Lett. 75, 2542 (1995) CrossRefADSGoogle Scholar
  7. M.A. Makeev, A. Madhukar, Nano Lett. 6, 1279 (2006) CrossRefGoogle Scholar
  8. J. Tersoff, C. Teichert, M.G. Lagally, Phys. Rev. Lett. 76, 1675 (1996) CrossRefADSGoogle Scholar
  9. O.G. Schmidt, O. Kienzle, Y. Hao, K. Eberl, F. Emst, Appl. Phys. Lett. 74, 1272 (1999) CrossRefADSGoogle Scholar
  10. J.T. Robinson, J.A. Liddle, A. Minor, V. Radmilovic, D.O. Yi, P. Alex Greaney, K.N. Long, D.C. Chrzan, O.D. Dubon, Nano Lett. 5, 2070 (2005) CrossRefGoogle Scholar
  11. J.T. Robinson, D.A. Walko, D.A. Arms, D.S. Tinberg, P.G. Evans, Y. Cao, J.A. Liddle, A. Rastelli, O.G. Schmidt, O.D. Dubon, Phys. Rev. Lett. 98, 106102 (2007) CrossRefADSGoogle Scholar
  12. C.H. Lin, Y.C. Tsai, Phys. Rev. B 65, 085412 (2002) CrossRefADSGoogle Scholar
  13. A. Rastelli, M. Kummer, H. von Känel, Physica E 13, 1008 (2002) CrossRefADSGoogle Scholar
  14. V.A. Shchukin, D. Bimberg, T.P. Munt, D.E. Jesson, Phys. Rev. B 70, 085416 (2004) CrossRefADSGoogle Scholar
  15. C.L. Berrie, B. Liu, S.R. Leone, Appl. Surf. Sci. 175-176, 69 (2001) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.State Key Laboratory of Optoelectronic Materials and Technologies, Institute of Optoelectronic and Functional Composite Materials, School of Physics Science & Engineering, Zhongshan UniversityGuangzhouP.R. China

Personalised recommendations