Advertisement

The European Physical Journal B

, Volume 61, Issue 2, pp 159–163 | Cite as

Rochelle salt in an inhomogeneous electric field

  • B. Fugiel
Solids and Liquids

Abstract.

The parameters of the hysteresis loop in the ferroelectric Rochelle salt were investigated using a sample with two pairs of electrodes: measurement electrodes and the side ones. It has been shown that the difference between the potentials of the measurement and the side electrodes (generating an inhomogeneous electric field) leads to gradual decay in time t of the remanent polarization Pr. The time required for the hysteresis loop to disappear in the inhomogeneous electric field (not parallel to the ferroelectric axis) decreases with temperature increase from 44±3 h at – 9°C to 2.3±0.1 h at 21.9 °C. On the other hand, the crystal placed for a sufficiently long time simultaneously in the measuring electric field and in the constant inhomogeneous one may finally exhibit a stationary hysteresis loop with a reduced remanent polarization and the unchanged coercive field. It has been shown that the crystal as a whole does not have to be polarized perpendicularly to the ferroelectric axis in order for its hysteresis loop to be reduced.

PACS.

77.80.-e Ferroelectricity and antiferroelectricity 77.80.Dj Domain structure; hysteresis 77.80.Fm Switching phenomena 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Nakatani, J. Phys. Soc. Jpn 32, 1556 (1972) CrossRefADSGoogle Scholar
  2. J. Janta, J. Phys. Soc. Jpn 28, Suppl. 340 (1970) Google Scholar
  3. J. Stankowski, A. Gałęzewski, S. Waplak, U. Gruszczy\(\grave{\rm n}\)ska, H. Gierszal, Ferroelectrics 6, 209 (1974) CrossRefGoogle Scholar
  4. A.G. Chynoweth, Phys. Rev. 113, 159 (1959) CrossRefADSGoogle Scholar
  5. J. Eisner, Ferroelectrics 8, 621 (1974) Google Scholar
  6. E. Fatuzzo, Helv. Phys. Acta 33, 501 (1960) Google Scholar
  7. E. Fatuzzo, W.J. Merz, Ferroelectricity (North-Holland Publishing Company, Amsterdam, 1967), p. 252 Google Scholar
  8. L. Kalisz, B. Fugiel, J. Zioło, Solid State Commun. 89, 393 (1994) CrossRefADSGoogle Scholar
  9. K. \(\grave{\rm C}\)wikiel, B. Fugiel, M. Mierzwa, J. Phys.: Condens. Matter 12, 5033 (2000) CrossRefADSGoogle Scholar
  10. B. Fugiel, Physica B 325, 256 (2003) CrossRefADSGoogle Scholar
  11. T. Kikuta, H. Nishizuka, T. Yamazaki, N. Nakatani, Ferroelectrics 336, 91 (2006) CrossRefGoogle Scholar
  12. B. Fugiel, K. \(\grave{\rm C}\)wikiel, W. Serweci\(\grave{\rm n}\)ski, J. Phys.: Condens. Matter 14, 11837 (2002) CrossRefADSGoogle Scholar
  13. T. Mitsui, J. Feruichi, Phys. Rev. 90, 193 (1953) CrossRefADSGoogle Scholar
  14. I.V. Stasyuk, O.V. Velychko, Ferroelectrics 316, 51 (2005) CrossRefGoogle Scholar
  15. A.N. Morozovska, Ferroelectrics 317, 37 (2005) CrossRefGoogle Scholar
  16. P. Zubko, D.J. Jung, J.F. Scott, J. Appl. Phys. 100, 114112 (2006) CrossRefGoogle Scholar
  17. A.M. Bratkovsky, A.P. Levanyuk, Phys. Rev. B 61, 15042 (2000) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2008

Authors and Affiliations

  1. 1.August Chełkowski Institute of Physics, Silesian UniversityKatowicePoland

Personalised recommendations