Advertisement

The European Physical Journal B

, Volume 59, Issue 3, pp 297–303 | Cite as

First principles study of the electronic structures of erbium silicides with non-frozen 4f treatment

  • C. L. Ma
  • S. Picozzi
  • X. Wang
  • Z. Q. Yang
Solids and Liquids

Abstract.

The electronic structures (especially 4f states) of hexagonal and tetragonal erbium silicides are investigated within density functional theory. Contrary to previous theoretical studies on these compounds, Er 4f electrons are treated as valence state electrons, explicitly taking into account the on-site Coulomb interactions. Total energy calculations show that the relaxed hexagonal ErSi1.7 is more stable than the tetragonal structure, consistently with related experimental observations. The calculated total density of states of the hexagonal ErSi1.7 agrees well with the experimental valence-band spectrum in a wide energy range from 0 to 12 eV below the Fermi level. In addition, our study indicates that the occupied 4f states in erbium silicides can also locate in the energy range of 0–4.0 eV below the Fermi energy, much different from the prediction of the previously adopted Er ion model.

PACS.

71.15.Mb Density functional theory, local density approximation, gradient and other corrections 71.20.Ps Other inorganic compounds 71.27.+a Strongly correlated electron systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E.J. Tan, M.Bouville, D.Z. Chi, K.L. Pey, P.S. Lee, D.J. Srolovitz, C.H. Tung, Appl. Phys. Lett. 88, 021908 (2006) CrossRefGoogle Scholar
  2. C. Bonet, I.M. Scott, D.J. Spence, T.J. Wood, T.C.Q. Noakes, P. Bailey, S.P. Tear, Phys. Rev. B 72, 165407 (2005) CrossRefADSGoogle Scholar
  3. C. Rogero, C. Koitzsch, M.E. González, P. Aebi, J. Cerdá, J.A. Martín-Gago, Phys. Rev. B 69, 045312 (2004) CrossRefADSGoogle Scholar
  4. N. Frangis, J. Van Landuyt, G. Kaltsas, A. Travlos, A.G. Nassiopoulos, J. Cryst. Growth 172, 175 (1997) CrossRefGoogle Scholar
  5. S. Saintenoy, P. Wetzel, C. Pirri, D. Bolmont, G. Gewinner, Surf. Sci. 331-333, 546 (1995) Google Scholar
  6. L. Pahun, Y. Campidelli, F.A. d'Avitaya, P.A. Badoz, Appl. Phys. Lett. 60, 1166 (1992) CrossRefADSGoogle Scholar
  7. P. Wetzel, L. Haderbache, C. Pirri, J.C. Peruchetti, D.Bolmont, G. Gewinner, Phys. Rev. B 43, 6620 (1991) CrossRefADSGoogle Scholar
  8. J.A. Knapp, S.T. Picraux, Appl. Phys. Lett. 48, 466 (1986) CrossRefADSGoogle Scholar
  9. K.N. Tu, R.D. Thompson, B.Y. Tsaur, Appl. Phys. Lett. 38, 626 (1981) CrossRefADSGoogle Scholar
  10. H. Norde, J. de Sousa Pires, F. d'Heurle, F. Pesavento, S. Petersson, P.A. Tove, Appl. Phys. Lett. 38, 865 (1981) CrossRefADSGoogle Scholar
  11. M. Nishisaka, T. Asano, Jpn. J. Appl. Phys. (Part. I) 37, 1295 (1998) CrossRefADSGoogle Scholar
  12. R. Ragan, Y. Chen, D.A.A. Ohlberg, G.M. Ribeiro, R.S. Williams, J. Cryst. Growth 251, 657 (2003) CrossRefGoogle Scholar
  13. W.C. Tsai, H.C. Hsu, H.F. Hsu, L.J. Chen, Appl. Surf. Sci. 244, 115 (2005) CrossRefADSGoogle Scholar
  14. W. Zhou, Y, Zhu, T. Ji, X.Y. Hou, Q. Cai, Nanotech. 17, 852 (2006) CrossRefADSGoogle Scholar
  15. A. Travlos, N. Salamouras, E. Flouda, Appl. Surf. Sci. 120, 355 (1997) CrossRefGoogle Scholar
  16. G. Kaltsas, A. Travlos, A.G. Nassiopoulos, N. Frangis, J. Van Landuyt, Appl. Surf. Sci. 102, 151 (1996) CrossRefGoogle Scholar
  17. P. Paki, U. Kafader, P. Wetzel, C. Pirri, J.C. Peruchetti, D. Bolmont, G. Gewinner, Phys. Rev. B 45, 8490 (1992) CrossRefADSGoogle Scholar
  18. J.A. Knapp, S.T. Picraux, Mater. Res. Soc. Symp. Proc. 54, 261 (1986) Google Scholar
  19. L. Magaud, J.Y. Veuillen, D. Lollman, T.A.N. Tan, Phys. Rev. B 46, 1299 (1992) CrossRefADSGoogle Scholar
  20. L. Stauffer, C. Pirri, P. Wetzel, A. Mharchi, P. Paki, D. Bolmont, G. Gewinner, Phys. Rev. B 46, 13201 (1992) CrossRefADSGoogle Scholar
  21. G. Allan, I. Lefebvre, N.E. Christensen, Phys. Rev. B 48, 8572 (1993) CrossRefADSGoogle Scholar
  22. P. Wetzel, L. Haderbache, C. Pirri, J.C. Peruchetti, D. Bolmont, G. Gewinner, Surf. Sci. 251-252, 799 (1991) Google Scholar
  23. J.K. Lang, Y. Baer, P.A. Cox, J. Phys. F 11, 121 (1981) CrossRefADSGoogle Scholar
  24. G. Rossi, Surf. Sci. Rep. 1, 7 (1987) Google Scholar
  25. F. Gan, L.V.C. Assali, L.C. Kimerling, Mater. Sci. Forum 96-201, 579 (1995) Google Scholar
  26. J. Wan, L. Ye, Q. Sun, X. Wang, Phys. Rev. B 58, 10415 (1998) CrossRefADSGoogle Scholar
  27. Y. Fu, Z. Huang, X. Wang, L. Ye, J. Phys.: Condens. Matter 15, 1437 (2003) CrossRefADSGoogle Scholar
  28. V.I. Anisimov, J. Zaanen, O.K. Andersen, Phys. Rev. B 44, 943 (1991) CrossRefADSGoogle Scholar
  29. V.I. Anisimov, I.V. Solovyev, M.A. Korotin, M.T. Czyzyk, G.A. Sawatzky, Phys. Rev. B 48, 16929 (1993) CrossRefADSGoogle Scholar
  30. H.L. Skriver, The LMTO Method (Springer, Berlin, 1984) Google Scholar
  31. M. Methfessel, M. van Schilfgaarde, Electronic Structure and Physical Properties of Solids: The uses of the LMTO method, edited by H. Dreysse (Springer, Heidelberg, 1999), p. 114 Google Scholar
  32. S.H. Vosko, L. Wilk, M. Nussair, J. Phys. 58, 1200 (1980) MathSciNetGoogle Scholar
  33. D.J. Singh, Planewaves, Pseudopotentials, and the APW Method (Kluwer Academic Publishers, Boston, and references therein, 1994) Google Scholar
  34. P.E. Blöchl, Phys. Rev. B 50, 17953 (1994) CrossRefADSGoogle Scholar
  35. V.I. Anisimov, F. Aryasetiawanz, A.I. Lichtenstein, J. Phys.: Condens. Matter 9, 767 (1997) CrossRefADSGoogle Scholar
  36. Z.Q. Yang, Z. Huang, L. Ye, X.D. Xie, Phys. Rev. B 60, 15674 (1999) CrossRefADSGoogle Scholar
  37. Z. Huang, L. Ye, Z.Q. Yang, X. Xie, Phys. Rev. B 61, 12786 (2000) CrossRefADSGoogle Scholar
  38. C.L. Ma, L. Ye, Z.Q. Yang, J. Phys.: Condens. Matter 17, 7963 (2005) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Surface Physics Laboratory (National Key Laboratory), Fudan UniversityShanghaiChina
  2. 2.Department of Applied PhysicsUniversity of Science and Technology of SuzhouSuzhouChina
  3. 3.CNR-INFM, CASTI Regional LaboratoryCoppito (L'Aquila)Italy

Personalised recommendations