The European Physical Journal B

, Volume 59, Issue 1, pp 85–92 | Cite as

How non-uniform tolerance parameter strategy changes the response of scale-free networks to failures

Interdisciplinary Physics

Abstract.

In this paper, we introduce a non-uniform tolerance parameter (TP) strategy (the tolerance parameter is characterized by the proportion between the unused capacity and the capacity of a vertex) and study how the non-uniform TP strategy influences the response of scale-free (SF) networks to cascading failures. Different from constant TP in previous work of Motter and Lai (ML), the TP in the proposed strategy scales as a power-law function of vertex degree with an exponent b. The simulations show that under low construction costs D, when b>0 the tolerance of SF networks can be greatly improved, especially at moderate values of b; When b<0 the tolerance gets worse, compared with the case of constant TP in the ML model. While for high D the tolerance declines slightly with the b, namely b<0 is helpful to the tolerance, and b>0 is harmful. Because for smaller b the cascade of the network is mainly induced by failures of most high-degree vertices; while for larger b, the cascade attributes to damage of most low-degree vertices. Furthermore, we find that the non-uniform TP strategy can cause changes of the structure and the load-degree correlation in the network after the cascade. These results might give insights for the design of both network capacity to improve network robustness under limitation of small cost, and for the design of strategies to defend cascading failures of networks.

PACS.

89.75.Hc Networks and genealogical trees 89.75.Fb Structures and organization in complex systems 89.40.Bb Land transportation 89.20.Hh World Wide Web, Internet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Albert, A.-L. Barabasi, Rev. Mod. Phys. 74, 47 (2002) CrossRefADSMathSciNetGoogle Scholar
  2. S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002) CrossRefADSGoogle Scholar
  3. R. Albert, H. Jeong, A.-L. Barabasi, Nature 406, 378 (2000) CrossRefADSGoogle Scholar
  4. R. Cohen, K. Erez, D. Ben-Avraham, S. Havlin, Phys. Rev. Lett. 85, 4626 (2000) CrossRefADSGoogle Scholar
  5. R. Cohen, K. Erez, D. Ben-Avraham, S. Havlin, Phys. Rev. Lett. 86, 3682 (2001) CrossRefADSGoogle Scholar
  6. R. Albert, I. Albert, G.L. Nakarado, Phys. Rev. E 69, 025103(R) (2004) CrossRefADSGoogle Scholar
  7. P. Holme, B.J. Kim, Phys. Rev. E 65, 066109 (2002) CrossRefADSGoogle Scholar
  8. A.E. Motter, Y.-C. Lai, Phys. Rev. E 66, 065102 (2002) CrossRefADSMathSciNetGoogle Scholar
  9. Y. Moreno, R. Pastor-Satorras, A. V'asquez, A. Vespignani, Europhys. Lett. 62, 292 (2003) CrossRefADSGoogle Scholar
  10. P. Crucitti, V. Latora, M. Marchiori, Phys. Rev. E 69, 045104 (2004) CrossRefADSGoogle Scholar
  11. R. Kinney, P. Crucitti, R. Albert, V. Latora, e-print arXiv:cond-mat/0410318 (2004) Google Scholar
  12. E.J. Lee, K.-I. Goh, B.Kahng, D. Kim, e-print arXiv:cond-mat/0410684 (2004) Google Scholar
  13. L. Zhao, K. Park, Y.-C. Lai, Phys. Rev. E 70, 035101 (2004) CrossRefADSGoogle Scholar
  14. L.K. Gallos, P. Argyrakis, A. Bunde, R. Cohen, S. Havlin, Physica A 344, 504 (2004) CrossRefADSGoogle Scholar
  15. L.K. Gallos, R. Cohen, P. Argyrakis, A. Bunde, S. Havlin, Phys. Rev. Lett. 94, 188701 (2005) CrossRefADSGoogle Scholar
  16. L.D. Asta, A. Barrat, M. Barthelemy, A. Vespignani, e-print arXiv:physics/0603163 (2006) Google Scholar
  17. K.-I. Goh, B. Kahng, D. Kim, Phys. Rev. Lett. 87, 278701 (2001); M. Barthelemy, Phys. Rev. Lett. 91, 189803 (2003); K.-I. Goh, C.-M. Chim, B. Kahng, D. Kim, Phys. Rev. Lett. 91, 189804 (2003) CrossRefADSGoogle Scholar
  18. A.E. Motter, Phys. Rev. Lett. 93, 098701 (2004) CrossRefADSGoogle Scholar
  19. Y. Hayashi, T. Miyazaki, e-print arXiv:cond-mat/0503615 (2005) Google Scholar
  20. Y. Hayashi, J. Matsukubo, Physica A 380, 552 (2007) CrossRefADSGoogle Scholar
  21. A.-L. Barabasi, R. Albert, Science 286, 509 (1999) CrossRefMathSciNetGoogle Scholar
  22. S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, Phys. Rev. Lett. 85, 4633 (2000) CrossRefADSGoogle Scholar
  23. X.-M. Zhao, Z.-Y. Gao, in preparation Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.School of Traffic and Transportation, Beijing Jiaotong UniversityBeijingP.R. China
  2. 2.National Key Laboratory Railway Traffic and safety, Beijing Jiaotong UniversityBeijingP.R. China

Personalised recommendations