Modeling the emission red-shift in amorphous semiconductors and in organic-inorganic hybrids using extended multiple trapping

Solid and Condensed State Physics

Abstract.

A model of thermal relaxation within localized states based on the extended multiple trapping framework is used to describe the red-shift of the emission maximum intensity as the excitation energy decreases. The model is applied to amorphous hydrogenated silicon (a-Si:H) and to organic-inorganic hybrids systems giving values for the energy gap, E0, (1.896–3.882 eV) and for the β (4.36–12.08 eV-1) parameter that characterizes the experimental decay of the density of localized states within the gap consistent with those achieved by some other recombination models previously reported for a-Si:H.. The thermal relaxation within localized states model is more physically detailed incorporating radiative and non-radiative transition mechanism for carriers relaxing into localized states that are explicitly absent in the previously reported theoretical descriptions

PACS.

78.55.Qr Amorphous materials; glasses and other disordered solids 81.05.Gc Amorphous semiconductors 81.07.Pr Organic-inorganic hybrid nanostructures 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. (a) 1989 Amorphous Insulators and Semiconductors, edited by M.F. Thorpe, M.I. Mitkova (Kluwer Academic Publishers); (b) G.J. Adriaenssens, in Amorphous Insulators and Semiconductors, edited by M.F. Thorpe, M.I. Mitkova (Kluwer Academic Publishers, 1989) pp. 437–468 Google Scholar
  2. F. Boulitrop, D.J. Dunstan, Phys. Rev. B 28, 5923 (1983); D.J. Dunstan, F. Boulitrop. Phys. Rev. B 30, 5945 (1984) CrossRefADSGoogle Scholar
  3. W.-C. Chen, B.J. Feldman, J. Bajaj, F.-M. Tong, G.K. Wong, Solid State Commun. 38, 357 (1981) CrossRefADSGoogle Scholar
  4. J . Shah, A. Pinczuk, F.B. Alexander, B.G. Bagley, Solid State Commun. 42, 717 (1982) CrossRefGoogle Scholar
  5. K. Maschke, E. Merk, W. Czaja, J. Non-Crist. Solids 77–78, 687 (1985) Google Scholar
  6. K. Maschke, E. Merk, W. Czaja, Phil. Mag. B 56, 457 (1987) Google Scholar
  7. W. Czaja, K. Maschke, E. Merk, J. Lumin. 40–41, 559 (1988) Google Scholar
  8. S.P. Depinna, B.C. Cavenett, W.E. Lamb, Phil. Mag. B 47, 99 (1982) Google Scholar
  9. R.C. Fang, J. Lumin. 48–49, 631 (1991) Google Scholar
  10. J. Rusli, J. Robertson, G.A. Amaratunga, J. Appl. Phys. 80, 2998 (1996) CrossRefADSGoogle Scholar
  11. R. Fang, Y. Song, W. Jiang, K. Yan, J. Lumin. 40–41, 905 (1988) Google Scholar
  12. S.V. Chernvshov, E.I. Terukov, V.A. Vassilyev, A.S. Volkov, J. Non-Cryst. Solids 134, 218 (1991) CrossRefGoogle Scholar
  13. V.P. Bondarenko, V.E. Borisenko, A.M. Dorofeev, I.N. Germanenko, S.V. Gaponenko, J. Appl. Phys. 75, 2727 (1994) CrossRefADSGoogle Scholar
  14. I. Hirabayashi, K. Morigaki, S. Yamanaka, J. Non-Cryst. Solids 59–60, 645 (1983) Google Scholar
  15. (a) V. Bekiari, P. Lianos, Langmuir 14, 3459 (1998); (b) V. Bekiari, P. Lianos, Chem. Mater. 10, 3777 (1998) CrossRefGoogle Scholar
  16. V. de Zea Bermudez, L.D. Carlos, M.C. Duarte, M.M. Silva, C.J. Silva, M.J. Smith, M. Assunção, L. Alcácer, J. Alloys and Compounds 275–277, 21 (1998) Google Scholar
  17. S.J.L. Ribeiro, K. Dahmouche, C.A. Ribeiro, C.V. Santilli, S.H. Pulcinelli, J. Sol-Gel Sci. Tech. 13, 427 (1998) CrossRefGoogle Scholar
  18. L.D. Carlos, R.A. Sá Ferreira, V. de Zea Bermudez, C. Molina, L.A. Bueno, S.J.L. Ribeiro, Phys. Rev. B 60, 10042 (1999) CrossRefADSGoogle Scholar
  19. (a) L.D. Carlos, V. de Zea Bermudez, R.A. Sá Ferreira, L. Marques, M. Assunção, Chem. Mater. 11, 581 (1999); (b) R.A. Sá Ferreira, L.D. Carlos, V. de Zea Bermudez, Thin Solid Films 343, 476 (1999) CrossRefGoogle Scholar
  20. L.D. Carlos, R.A. Sá Ferreira, V. de Zea Bermudez, S.J.L. Ribeiro, Adv. Func. Mater. 2, 111 (2001) CrossRefGoogle Scholar
  21. (a) L.D. Carlos, R.A. Sá Ferreira, V. de Zea Bermudez, in Handbook of Organic-Inorganic Hybrid Materials and Nanocomposites, edited by H.S. Nalwa (American Scientific Publishers, Morth Lewis Way, Califórnia) Vol. 1, Chap. 9, pp. 353–380; (b) L.D. Carlos, R.A. Sá Ferreira, R.N. Pereira, M. Assunção, V. de Zea Bermudez, J. Phys. Chem. B 108, 14924 (2004) CrossRefGoogle Scholar
  22. Functional Hybrid Materials, edited by P.G. Romero, C. Sanchez (Wiley-VCH, Weinheim, 2003) Google Scholar
  23. C. Sanchez, B. Julián, P. Belleville, M. Popall, J. Mat Chem. 15, 3559 (2005) CrossRefGoogle Scholar
  24. A Genetic Algorithm for Function Optimization: A Matlab Implementation by C. Houck, J. Joines, M. Kay, NCSU-IE TR 95-09, 1995 Google Scholar
  25. (a) T. Takagahara, K. Takeda, Phys. Rev. B 46, 15578 (1992); (b) G. Allan, C. Delerue, M. Lannoo, Phys. Rev. B 48, 7951 (1993); (c) Y. Kanemitsu, K. Susuki, S. Kyushin, H. Matsumoto, Phys. Rev. B 51, 13103 (1995); (d) A.O. Konstantinov, A. Henry, C.I. Harry, E. Janzén, Appl. Phys. Lett. 66, 2250 (1995) CrossRefADSGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  • R. A. Sá Ferreira
    • 1
    • 2
  • A. L. Ferreira
    • 1
  • L. D. Carlos
    • 1
    • 2
  1. 1.Departamento de FísicaUniversidade de AveiroAveiroPortugal
  2. 2.CICECO, Universidade de AveiroAveiroPortugal

Personalised recommendations