Advertisement

Modulational instability in asymmetric coupled wave functions

  • I. Kourakis
  • P. K. Shukla
Models

Abstract.

The evolution of the amplitude of two nonlinearly interacting waves is considered, via a set of coupled nonlinear Schrödinger-type equations. The dynamical profile is determined by the wave dispersion laws (i.e. the group velocities and the group velocity dispersion terms) and the nonlinearity and coupling coefficients, on which no assumption is made. A generalized dispersion relation is obtained, relating the frequency and wave-number of a small perturbation around a coupled monochromatic (Stokes') wave solution. Explicitly stability criteria are obtained. The analysis reveals a number of possibilities. Two (individually) stable systems may be destabilized due to coupling. Unstable systems may, when coupled, present an enhanced instability growth rate, for an extended wave number range of values. Distinct unstable wavenumber windows may arise simultaneously.

PACS.

05.45.Yv Solitons 42.65.Sf Dynamics of nonlinear optical systems; optical instabilities, optical chaos and complexity, and optical spatio-temporal dynamics 42.65.Jx Beam trapping, self-focusing and defocusing; self-phase modulation 52.35.Mw Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. Dauxois, M. Peyrard, Physics of Solitons (Cambridge Univ. Press, Cambridge, 2005) Google Scholar
  2. C. Sulem, P.L. Sulem, The Nonlinear Schrödinger Equation (Springer, Berlin, 1999) Google Scholar
  3. L.A. Ostrovskii, Soviet Physics JETP 24, 797 (1967); S.V. Manakov, Soviet Physics JETP 38, 248 (1974) ADSGoogle Scholar
  4. C.J. McKinstrie, R. Bingham, Phys. Fluids 1, 230 (1989) CrossRefGoogle Scholar
  5. A. Hasegawa, F. Tappert, Applied Phys. Lett. 23, 142 (1973) CrossRefADSGoogle Scholar
  6. G. Agrawal, P.L. Baldeck, R.R. Alfano, Phys. Rev. A, 39, 3406 (1989) Google Scholar
  7. K.P. Das, S. Sihi, J. Plasma Phys. 21, 183 (1979) CrossRefADSGoogle Scholar
  8. M.R. Gupta, B.K. Som, B. Dasgupta, J. Plasma Phys. 25, 499 (1981) ADSCrossRefGoogle Scholar
  9. I. Kourakis, P.K. Shukla, G.E. Morfill, New J. Phys. 7, 153 (2005) CrossRefADSGoogle Scholar
  10. J.M. Bilbault, P. Marquie, B. Michaux, Phys. Rev. E 51, 817 (1995) CrossRefADSGoogle Scholar
  11. N. Lazarides, G.P. Tsironis, Phys. Rev. E 71, 036614 (2005); I. Kourakis, P.K. Shukla, Phys. Rev. E 72, 016626 (2005) CrossRefADSGoogle Scholar
  12. L. Pitaevskii, S. Stringari, Bose-Einstein Condensation (Oxford U. Press, New York, 2003) Google Scholar
  13. K. Kasamatsu, M. Tsubota, Phys. Rev. Lett. 93, 100402 (2004) CrossRefADSGoogle Scholar
  14. I. Kourakis, P.K. Shukla, M. Marklund, L. Stenflo, Eur. Phys. J. B 46, 381 (2005) CrossRefADSGoogle Scholar
  15. M. Lisak, A. Höök, D. Anderson, J. Opt. Soc. Am. B 7, 810 (1990) ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  1. 1.Fakultät für Physik und Astronomie, Ruhr-Universität BochumBochumGermany

Personalised recommendations