Advertisement

On the rapid increase of intermittency in the near-dissipation range of fully developed turbulence

Hydrodynamics

Abstract.

Intermittency, measured as \(\log \left({F(r)}/{3}\right)\), where F(r) is the flatness of velocity increments at scale r, is found to rapidly increase as viscous effects intensify, and eventually saturate at very small scales. This feature defines a finite intermediate range of scales between the inertial and dissipation ranges, that we shall call near-dissipation range. It is argued that intermittency is multiplied by a universal factor, independent of the Reynolds number Re, throughout the near-dissipation range. The (logarithmic) extension of the near-dissipation range varies as \(\sqrt{\log Re}\). As a consequence, scaling properties of velocity increments in the near-dissipation range strongly depend on the Reynolds number.

Keywords

Spectroscopy Neural Network State Physics Reynolds Number Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Vincent, M. Meneguzzi, J. Fluid Mech. 225, 1 (1991) Google Scholar
  2. Z.-S. She, E. Jackson, S. A. Orszag, Proc. R. Soc. London A 434, 101 (1991) Google Scholar
  3. U. Frisch, R. Morf, Phys. Rev. A 23, 2673 (1981) CrossRefGoogle Scholar
  4. O. Chanal, B. Chabaud, B. Castaing, B. Hébral, Eur. Phys. J. B 17, 301 (2000) CrossRefGoogle Scholar
  5. J.-F. Pinton, R. Labbé, J. Phys. II France 4, 1461 (1994) CrossRefGoogle Scholar
  6. E. Leveque, C. Koudella, Phys. Rev. Lett. 86, 4033 (2001) CrossRefPubMedGoogle Scholar
  7. N. Cao, S. Chen, Z.-S. She, Phys. Rev. Lett. 76, 3711 (1996) CrossRefPubMedGoogle Scholar
  8. G. Ruiz-Chavarria, C. Baudet, S. Ciliberto, Phys. Rev. Lett. 74, 1986 (1995) PubMedGoogle Scholar
  9. U. Frisch, Turbulence: the legacy of Kolmogorov, (Cambridge University Press, England, 1995) Google Scholar
  10. B. Castaing, Y. Gagne, M. Marchand, Physica D 68, 387 (1993) Google Scholar
  11. D. Lohse, Phys. Rev. Lett. 73 (24), 3223 (1994) Google Scholar
  12. R.H. Kraichnan, Phys. Fluids 10, 2080 (1967) Google Scholar
  13. G. Paladin, A. Vulpiani, Phys. Rev. A 35, 1971 (1987) PubMedGoogle Scholar
  14. U. Frisch, M. Vergassola, Europhys. Lett. 14, 439 (1991) Google Scholar
  15. M. Nelkin, Phys. Rev. A 42, 7226 (1990) PubMedGoogle Scholar
  16. C. Meneveau, Phys. Rev. E 54, 3657 (1996) Google Scholar
  17. B. Castaing, Y. Gagne, E. Hopfinger, Physica D 46, 177 (1990) Google Scholar
  18. P.-O. Amblard, J.-M. Brossier, Eur. Phys. J. B 12, 579 (1999) Google Scholar
  19. A. Arneodo, S. Manneville, J.-F. Muzy, Eur. Phys. J. B 1, 129 (1998) Google Scholar
  20. J. Delour, J.-F. Muzy, A. Arneodo, Eur. Phys. J. B 23, 243 (2001) Google Scholar
  21. L. Chevillard, Ph.D. thesis, Bordeaux I University (2004), available online at http://tel.ccsd.cnrs.fr Google Scholar
  22. A.N. Kolmogorov, C. R. Acad. Sci. USSR 30, 301 (1941) Google Scholar
  23. V. Emsellem, L.P. Kadanoff, D. Lohse, P. Tabeling, Z.J. Wang, Phys. Rev. E 55, 2672 (1997) Google Scholar
  24. Y. Saito, Phys. Soc. Jpn 61, 403 (1992) Google Scholar
  25. E.A. Novikov, Phys. Rev. E 50, 3303 (1994) Google Scholar
  26. L. Chevillard, S.G. Roux, E. Leveque, N. Mordant, J.-F. Pinton, A. Arneodo, Phys. Rev. Lett. 91, 214502 (2003) PubMedGoogle Scholar
  27. R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli, S. Succi, Phys. Rev. E 48, R29 (1993) Google Scholar
  28. P.K. Yeung, Y. Zhou, Phys. Rev. E 56, 1746 (1997) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Laboratoire de PhysiqueGrenobleFrance
  2. 2.Laboratoire Écoulements Géophysiques et Industriels, CNRS, Université Grenoble 1GrenobleFrance

Personalised recommendations