Advertisement

Berry’s phase for an electron in a periodic potential without inversion symmetry

Solid and Condensed State Physics

Abstract.

Berry’s phase is calculated for an electron in a simple one-dimensional solid. The model used is a generalized Kronig-Penney potential, parameterized so that it may or may not have inversion symmetry. It is shown that the Berry’s phase as a function of an asymmetry parameter evolves from a linear to a non-linear form as inversion symmetry is broken. The functional form of the Berry’s phase is seen to be band-dependent in a simple way, suggesting that it can be used to identify the band in question.

Keywords

Spectroscopy Neural Network State Physics Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M.V. Berry, Proc. Roy. Soc. London Series a - Mathematical Physical and Engineering Sciences 392, 45 (1984) Google Scholar
  2. R. Resta, J. Phys.: Condens. Matter 12, R107 (2000) Google Scholar
  3. Geometric Phases in Physics, edited by A. Shapere, F. Wilczek (World Scientific, Singapore, 1989) Google Scholar
  4. S. Pancharatnam, Proc. Indian Acadamy of Science Series A 44, 247 (1956) Google Scholar
  5. C.A. Mead, Rev. Mod. Phys. 64, 51 (1992) CrossRefMathSciNetGoogle Scholar
  6. Q. Niu, L. Kleinman, Phys. Rev. Lett. 80, 2205 (1998) CrossRefGoogle Scholar
  7. Q. Niu, X.D. Wang, L. Kleinman, W.M. Liu, D.M.C. Nicholson, G.M. Stocks, Phys. Rev. Lett. 83, 207 (1999) CrossRefGoogle Scholar
  8. D. Vanderbilt, R.D. King-Smith, Phys. Rev. B 48, 4442 (1993) CrossRefGoogle Scholar
  9. R. Resta, Rev. Mod. Phys. 66, 899 (1994) CrossRefGoogle Scholar
  10. G. Sundaram, Q. Niu, Phys. Rev. B 59, 14915 (1999) CrossRefGoogle Scholar
  11. H. Mathur, Phys. Rev. Lett. 67, 3325 (1991) CrossRefPubMedGoogle Scholar
  12. Y. Aharonov, D. Bohm, Phys. Rev. 115, 485 (1959) CrossRefGoogle Scholar
  13. J. Ihm, J. Korean Physical Society 26, 552 (1993) Google Scholar
  14. P.L. Taylor, O. Heinonen, Condensed Matter Physics (Cambridge University Press, Cambridge, 2002) Google Scholar
  15. J. Zak, Phys. Rev. Lett. 62, 2747 (1989). CrossRefPubMedGoogle Scholar
  16. L. Michel, J. Zak, Europhys. Lett. 18, 239 (1992) Google Scholar
  17. R.L. de Kronig, W.G. Penney, Proc. Roy. Soc. London 130, 499 (1931) Google Scholar
  18. A.M. Eldib, H.F. Hassan, M.A. Mohamed, J. Phys. C - Solid State Physics 20, 3011 (1987) Google Scholar
  19. R.J. Hughes, J. Mathematical Analysis Appl. 222, 151 (1998) CrossRefGoogle Scholar
  20. A.R. Goñi, A.G. Rojo, E.N. Martinez, Am. J. Phys. 54, 1018 (1986) Google Scholar
  21. F. Szmulowicz, Am. J. Phys. 65, 1009 (1997) CrossRefGoogle Scholar
  22. P. Pereyra, E. Castillo, Phys. Rev. B 65, 205120 (2002) CrossRefGoogle Scholar
  23. G.H. Wannier, Phys. Rev. 52, 191 (1937) CrossRefGoogle Scholar
  24. W. Kohn, Phys. Rev. 115, 809 (1959) CrossRefGoogle Scholar
  25. R.A. Evarestov, V.P. Smirnov, Physica Status Solidi (b) 180, 411 (1993) Google Scholar
  26. A. Bruno-Alfonso, G.Q. Hai, J. Physics: Condens. Matter 15, 6701 (2003) CrossRefGoogle Scholar
  27. J. Zak, Phys. Rev. Lett. 48, 359 (1982) CrossRefGoogle Scholar
  28. S. de Gironcoli, S. Barone, R. Resta, Phys. Rev. Lett. 62, 2853 (1989) CrossRefPubMedGoogle Scholar
  29. H. Grosse, W.L. Kennedy, Phys. Lett. A 154, 116 (1991) CrossRefGoogle Scholar
  30. P. Exner, H. Grosse, preprint math-ph/9910029, 1999 Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Olin Physical Laboratory, Wake Forest UniversityWinston-SalemUSA

Personalised recommendations