Advertisement

Structure of grain boundaries in nanostructured powders: a Monte-Carlo/EAM numerical investigation

  • M. Grafouté
  • Y. Labaye
  • F. Calvayrac
  • J. M. Grenèche
Mesoscopic Physics

Abstract.

A new approach based on the Embedded Atom Method is applied to model the structure of grain boundaries in nanostructured powders. We choose a set of EAM parameters reproducing bcc as well as fcc structures. A Monte-Carlo scheme, namely various modifications of the well established simulated annealing/Metropolis algorithm, is used to obtain realistic structures of twisted and tilted double and triple grain boundaries as a function of the relative disorientation of the grains. We devise a completely general way to take into account the structure of the grains far from the interface as well as to constraint the relative orientation of the grains, without using periodic boundaries conditions, which would restrict the simulation to certain relative twist or tilt angles for the grains. A few parameters having to be assumed, we compare two methods to model the structure of the grain boundaries. As these two methods, depending on different parameters, lead to similar results, we therefore reduce the number of parameters to be assumed. Results indicate a new configuration which is closer to the bcc structure than the fcc one in the case of iron nanopowders.

Keywords

Iron Spectroscopy Boundary Condition Neural Network State Physics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.W. Siegel, Nanostruct. Mater. 3, 1 (1993) Google Scholar
  2. U. Herr, J. Jing, R. Birringer, U. Gonser, H. Gleiter, Appl. Phys. Lett. 50, 472 (1987) Google Scholar
  3. X. Zhu, R. Birringer, U. Herr, H. Gleiter, Phys. Rev. B 35, 9085 (1987) Google Scholar
  4. M. Fitzsimmons, J. Eastman, M. Müller-Stach, G. Wallner, Phys. Rev. B 44, 2452 (1991) Google Scholar
  5. G. Riexecker, Solid State Commun. 122, 299 (2002) Google Scholar
  6. S.J. Campbell, H. Gleiter, Mössbauer Spectrometry Applied to Magnetism and Materials Science, edited by G. Long, F. Grandjean, 1, 241–303 (1993) Google Scholar
  7. J. Balogh, L. Bujdoso, D. Kaptas, T. Kemeny, I. Vincze, S. Szabo, D.L. Beke, Phys. Rev. B 61, 4109 (2000) Google Scholar
  8. H. Guérault, J.M. Grenèche, J. Phys.: Condens. Matter 12, 4791 (2000) Google Scholar
  9. H. Guérault, M. Tamine, J.M. Grenèche, J. Phys.: Condens. Matter 12, 9497 (2000) Google Scholar
  10. L. Del Bianco, A. Hernando, E. Bonetti, E. Navarro, Phys. Rev. B 56, 8894 (1997) Google Scholar
  11. J. Balogh, T. Kemény, I. Vincze, S. Szabo, D. L. Beke, J. Toth, Phys. Rev. B 59, 14786 (1999) Google Scholar
  12. J. Panova, D. Farkas, Materials Research Soc. Symp. Proc., Vol. 364. MRS, Warrendale, PA, 151 (1995) Google Scholar
  13. J. Panova, D. Farkas, Phil. Mag. A 78, 389 (1998) Google Scholar
  14. M. Grafoute, Ph.D. Thesis University of Le Mans (2004) Google Scholar
  15. M. Grafoute, A. Slawska-Waniewska, J.M. Grenèche (to be published) Google Scholar
  16. M. Hou, V.S. Kharlamov, E.E. Zhurkin, Phys. Rev. B 66, 195408 (2002) Google Scholar
  17. R. Meyer, MRS Symposium Proceedings 634 B8.8.1 (2000) Google Scholar
  18. M.S. Daw, M. I. Baskes, Phys. Rev. B 29, 6443 (1984) Google Scholar
  19. M.S. Daw,S. M. Foiles, Phys. Rev. B 35, 2128 (1987) Google Scholar
  20. R.A. Johnson, Phys. Rev. B 37, 3924 (1987) Google Scholar
  21. M.S. Daw, Phys. Rev. B 39, 7441 (1988) Google Scholar
  22. S. M. Foiles, J.B. Adams, Phys. Rev. B 40, 5909 (1988) Google Scholar
  23. G. Simonelli, R. Pasianot, E. Savino, in Materials Research Society Symp. Proc., Vol. 291, MRS, Warrendale, PA, 567 (1993) Google Scholar
  24. L. Byeong-Joo, M.I. Baskes, Phys. Rev. B 62, 8564 (2000) Google Scholar
  25. L. Byeong-Joo, M.I. Baskes, K. Hanchul, C. Yang Koo, Phys. Rev. B 64, 184102 (2001) Google Scholar
  26. B.E Sundquist, Acta Metall. 12, 67 (1964) Google Scholar
  27. H.E Grenga, R. Kumar, Surf. Sci. 61, 283 (1973) Google Scholar
  28. R. Pasianot, D. Farkas, E.J. Savino, Phys. Rev. B 43, 6952 (1991) Google Scholar
  29. Z. Yang, R.A. Johnson, Modelling Simul. Mater. Sci. Eng. 1, 707 (1993) Google Scholar
  30. Van Swygenhoven et al. Phys. Rev. B 58, 11246 (1998) Google Scholar
  31. J. Schitz, F. Di Tolla, K. Jacobsen, Nature (London) 391, 561 (1998) Google Scholar
  32. V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter, Nature Materials 1, 45 (2002) PubMedGoogle Scholar
  33. G. Voronoi, J. Reine Angew. Math. 134, 198 (1908) Google Scholar
  34. S. Jakob, D.T. Francesco, W.K. Jacobsen, Nature 391, 561 (1998) Google Scholar
  35. F. Calvo, Annales de Physique France, 24, (1999) Google Scholar
  36. P. Keblinski, D. Wolf, S.R. Phillipot, H. Gleiter, Scripta Mater. 41, 631 (1999) Google Scholar
  37. C.L. Cleveland, W.D. Luetke, U. Landman, Phys. Rev. Lett. 81, 2036 (1998) Google Scholar
  38. V. Coffman, E. Iesulauro, J. Sethna, A. Ingraffea (private communication) Google Scholar
  39. L. Del Bianco, C. Ballesteros, J.M. Rojo, A. Hernando, Phys. Rev. Lett. 81, 4500 (1998) Google Scholar
  40. P. Keblinski, S.R. Phillpot, D. Wolf, H. Gleiter, Acta Mater. 45 987 (1997) Google Scholar
  41. D. Wolf, J. Wang, S.R. Phillpot, H. Gleiter, Phys. Rev. Lett. 74, 4686 (1995) PubMedGoogle Scholar
  42. J.K. Chen, D. Farkas, W.T. Reynolds JR, Acta. Mater. 45, 4415 (1997) Google Scholar
  43. K.L. Merkle, D.J. Smith, Phys. Rev. Lett. 59, 2887 (1987) PubMedGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • M. Grafouté
    • 1
  • Y. Labaye
    • 1
  • F. Calvayrac
    • 1
  • J. M. Grenèche
    • 1
  1. 1.Laboratoire de Physique de l’État Condensé, UMR CNRS 6087, Université du MaineLe Mans Cedex 9France

Personalised recommendations