Advertisement

Partial magnetization reversal using laser annealing in patterned NiFe/FeMn film

  • S. D. Choi
  • S. W. Kim
  • D. H. Jin
  • M. S. Lee
  • H. W. Joo
  • K. A. Lee
  • S. S. Lee
  • D. G. Hwang
Parameters tuning exchange bias in polycrystalline samples and magnetic configurations

Abstract.

We have studied local magnetization reversal by laser annealing in exchange biased NiFe/FeMn bilayer. Local magnetization reversal was performed by using the Nd:YAG laser under external magnetic field. When the laser illuminated the patterned film with the power of above 300 mW during 15 min, a magnetoresistance (MR) curve with symmetric peaks at the opposite field was obtained due to the local reversal of exchange biasing. A similar result was observed in NiFe/FeMn/NiFe trilayer. As the exposed area expanded, the intensity of opposite MR peak increased. The direction of exchange anisotropy in the partially reversed region can be restored by local laser annealing under alternating magnetic field, even if its MR peak was reduced by the damage and interdiffusion. The magnetic new domain structures of the partially reversed region was generated by laser annealing near the exposed area.

Keywords

Magnetic Field Neural Network Anisotropy Complex System Nonlinear Dynamics 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S.W. Kim, S.D. Choi, D.H. Jin, K.A. Lee, S.S. Lee, D.G. Hwang, J. Magn. Magn. Mater. 272, 376 (2004) CrossRefGoogle Scholar
  2. W.H. Meiklejohn, C.P. Bean, Phys. Rev. 102, 1413 (1956) CrossRefGoogle Scholar
  3. G.A. Prinz, Science 282, 1660 (1998) CrossRefPubMedGoogle Scholar
  4. E.B. Myers, D.C. Ralph, J.A. Katine, R.N. Louie, R.A. Buhrman, Science 285, 867 (1995) CrossRefGoogle Scholar
  5. J.Z. Sun, J. Magn. Magn. Mater. 202, 157 (1999) CrossRefGoogle Scholar
  6. C. Aroca, I. Tanarro, P. Sanchez, E. Lopez, M. Vazquez, M.C. Sanchez, Phys. Rev. B 42, 8086 (1990) CrossRefGoogle Scholar
  7. J.A. Katine, F.J. Albert, R.A. Buhrman, E.B. Myers, D.C. Ralph, Phys. Rev. Lett. 84, 3149 (2000) CrossRefPubMedGoogle Scholar
  8. C.G. Kim, H.C. Kim, B.S. Park, D.G. Hwang, S.S. Lee, D.Y. Kim, J. Magn. Magn. Mater. 198, 33 (1999) CrossRefGoogle Scholar
  9. M.F. Toney, T. Ching, J.K. Howard, J. Appl. Phys. 70, 6227 (1991) CrossRefGoogle Scholar
  10. S.W. Kim, J.K. Kim, J.H. Kim, B.K. Kim, J.Y. Lee, J.R. Rhee, S.S. Lee, D.G. Hwang, J. Appl. Phys. 93, 6602 (2003) CrossRefGoogle Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  • S. D. Choi
    • 1
  • S. W. Kim
    • 1
  • D. H. Jin
    • 1
  • M. S. Lee
    • 1
  • H. W. Joo
    • 1
  • K. A. Lee
    • 1
  • S. S. Lee
    • 2
  • D. G. Hwang
    • 2
  1. 1.Dankook Univ. Dept. of PhysicsCheonanKorea
  2. 2.Sangji Univ., Dept. of Computer and Electronic PhysicsWonjuKorea

Personalised recommendations