Advertisement

A molecular dynamics investigation of dynamical heterogeneity in supercooled water

  • V. TeboulEmail author
  • S. Maabou
  • L. C. Fai
  • A. Monteil
Solid and Condensed State Physics

Abstract.

We investigate the presence of dynamical heterogeneity in supercooled water with molecular dynamics simulations using the new water model proposed by Mahoney and Jorgensen [M.W. Mahoney, W.L. Jorgensen J. Chem. Phys. 112, 8910 (2000)]. Prompted by recent theoretical results [J.P. Garrahan, D. Chandler, Phys. Rev. Lett. 89, 35704 (2002)] we study the dynamical aggregation of the least and the most mobile molecules. We find dynamical heterogeneity in supercooled water and string-like dynamics for the most mobile molecules. We also find the dynamical aggregation of the least mobile molecules. The two kinds of dynamical aggregation appear however to be very different. Characteristic times are different and evolve differently. String-like motions appear only for the most mobile molecules, a result predicted by the facilitation theory. The aggregation of the least mobile molecules is more organized than the bulk while the opposite is observed for the most mobile molecules.

Keywords

Spectroscopy Neural Network State Physics Molecular Dynamic Complex System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K. Ito, C.T. Moynihan, C.A. Angell, Nature 398, 492 (1999)Google Scholar
  2. C.A. Angell, in Relaxations in Complex Systems, edited by K.L. Ngai, G.B. Wright (US Office of Naval Research, Arlington, 1984), p. 3 Google Scholar
  3. C.A. Angell, Science 267, 1924 (1995)Google Scholar
  4. C.A. Angell, J. Non-Cryst. Sol. 131-133, 13 (1991)Google Scholar
  5. M.D. Ediger, Annu. Rev. Phys. Chem. 51, 99 (2000)CrossRefGoogle Scholar
  6. D. Kivelson, G. Tarjus, J. Non-Cryst. Sol. 235-237, 86 (1998)Google Scholar
  7. V. Teboul, C. Alba-Simionesco, J. Phys.: Condens. Matter 14, 5699 (2002) CrossRefGoogle Scholar
  8. B.M. Erwin, R.H. Colby, J. Non-Cryst. Sol. 307-310, 225 (2002)Google Scholar
  9. H. Sillescu, J. Non-Cryst. Sol. 243, 81 (1999)Google Scholar
  10. W. Kob, C. Donati, S.J. Plimpton, P.H. Poole, S.C. Glotzer, Phys. Rev. Lett. 79, 2827 (1997)CrossRefGoogle Scholar
  11. K. Kim, R. Yamamoto, Phys. Rev. E 61, R41 (2000)Google Scholar
  12. R. Yamamoto, A. Onuki, Phys. Rev. Lett. 81, 4915 (1998)CrossRefGoogle Scholar
  13. A. Kerrache, V. Teboul, D. Guichaoua, A. Monteil, J. Non-Cryst. Sol. 322, 41 (2003)Google Scholar
  14. J.P. Garrahan, D. Chandler, Phys. Rev. Lett. 89, 35704 (2002); S. Whitelam, L. Berthier, J.P. Garrahan, Phys. Rev. Lett. 92, 185705 (2004); L. Berthier, D. Chandler, J.P. Garrahan, Europhys. Lett. 69, 320 (2005)Google Scholar
  15. M.W. Mahoney, W.L. Jorgensen, J. Chem. Phys. 112, 8910 (2000)Google Scholar
  16. M.W. Mahoney, W.L. Jorgensen, J. Chem. Phys. 114, 363 (2000)Google Scholar
  17. D. Paschek, J. Chem. Phys. 120, 6674 (2004)Google Scholar
  18. M. Yamada, S. Mossa, H.E. Stanley, F. Sciortino, Phys. Rev. Lett. 88, 195701 (2002)Google Scholar
  19. A.H. Marcus, J. Schofield, S.A. Rice, Phys. Rev. E 60, 5725 (1999)CrossRefGoogle Scholar
  20. C. Donati, J.F. Douglas, W. Kob, S.J. Plimpton, P.H. Poole, S.C. Glotzer, Phys. Rev. Lett. 80, 2338 (1998)CrossRefGoogle Scholar
  21. M.P. Allen, D.J. Tildesley, Computer simulation of liquids (Oxford University Press, New York, 1990) Google Scholar
  22. H.J.C. Berendsen, J.P.M Postma, W. Van Gunsteren, A. DiNola, J.R. Haak, J. Chem. Phys. 81, 3684 (1984)Google Scholar
  23. F. Sciortino, A. Geiger, H.E. Stanley, Nature 354, 218 (1991); N. Giovambattista, F.W. Starr, F. Sciortino, S.V. Buldyrev, H.E. Stanley, Phys. Rev. E 65, 041502 (2002)Google Scholar
  24. V. Teboul, A. Monteil, L.C. Fai, A. Kerrache, S. Maabou, Eur. Phys. J. B 40, 49 (2004)Google Scholar
  25. N. Giovambattista, S.V. Buldyrev, F.W. Starr, H.E. Stanley, Phys. Rev. Lett. 90, 5506 (2003)CrossRefGoogle Scholar
  26. H.J.C. Berendsen et al., J. Phys. Chem. 91, 6269 (1987)Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Laboratoire des Propriétés Optiques des Matériaux et Applications, UMR CNRS 6136, Université d’AngersAngersFrance
  2. 2.Department of PhysicsFaculty of Science, University of DschangDschangCameroon

Personalised recommendations