Phonon spectra and heat capacity of Li2B4O7 and LiB3O5 crystals

Solid and Condensed State Physics


The results of calculations of the phonon dispersion, the vibrational density of states and the heat capacity of lithium tetraborate and lithium triborate crystals are presented. They are obtained in the framework of a potential model that takes into account the non-equivalence of boron atoms in different structural positions (BO3 and BO4 units). A symmetry analysis of the phonon modes at Γ point was performed, and calculated frequencies are compared to experimental spectra. Analysis of Li contributions to the vibrational density of states reveals that the Li-O bonds in both crystals are relatively weak. This is in line with the experimentally observed high mobility of lithium ions at high temperatures. A good agreement between calculated and measured heat capacities from the literature was obtained.


Lithium Boron Heat Capacity Phonon Mode Boron Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. B. Wu, F. Xie, C.C.D. Deng, Z. Xu, Opt. Commun. 88, 451 (1992)ADSGoogle Scholar
  2. B.S.R. Sastry, F.A. Hummel, J. Am. Ceram. Soc. 41, 7 (1958)Google Scholar
  3. B.S.R. Sastry, F.A. Hummel, J. Am. Ceram. Soc. 42, 216 (1959)Google Scholar
  4. V.I. Aver’yanov, A.E. Kalmykov, Glass Phys. Chemistry 16, 492 (1990)Google Scholar
  5. J. Huang, Y. Shen, Appl. Phys. Lett. 15, 1579 (1991)CrossRefADSGoogle Scholar
  6. Mao Hongnei, Appl. Phys. Lett. 61, 1148 (1992)CrossRefGoogle Scholar
  7. T. Ukachi, R.J. Lane, J. Opt. Soc. Amer. B. 9, 1128 (1992)CrossRefADSGoogle Scholar
  8. C. Furetta, P.S. Weng, Operation Thermoluminescent dosimetry (World Scientific, London, 1998) Google Scholar
  9. K. Mahesh, P.S. Weng, C. Furetta, Thermoluminescence in solids and its applications (Nuclear Technology Publishing, Ashford, 1989) Google Scholar
  10. E.F. Dolzhenkova, V.N. Baumer, A.V. Tolmachev, B.M. Hunda, P.P. Puga, 6th Intern. Confer. on Inorganic Scintillators and their Applications (Book of Abstracts, Chamonix, France, 2001), p. 210 Google Scholar
  11. S.F. Radaev, L.A. Muradyan, L.F. Malakhova, Y.A. Burak, V.I. Simonov, Kristallografiya 34, 1400 (1989)Google Scholar
  12. S.F. Radaev, B.A. Maximov, V.I. Simonov, B.V. Andreev, V.A. D’yakov, Acta Crystallogr. B 48, 154 (1992)CrossRefGoogle Scholar
  13. V.V. Maslyuk, T. Bredow, H. Pfnür, Eur. Phys. J. B 41, 281 (2004)ADSGoogle Scholar
  14. J.D. Gale, Phil. Mag. B 73, 3 (1996); J.D. Gale, J. Chem. Soc. Faraday Trans. 93, 629 (1997); J.D. Gale, A.L. Rohl, Molec. Simulation 29, 291 (2003)Google Scholar
  15. P.P. Ewald, Ann. Phys. 64, 253 (1921)MATHGoogle Scholar
  16. P.M. Allen, D.J. Tildesley, Computer Simulation of Liquids (Clarendon Press, Oxford, 1989) Google Scholar
  17. W.G. Hoover, Phys. Rev. A 31, 1695 (1985)ADSGoogle Scholar
  18. M. Parrinello, A. Rahman, J. Appl. Phys. 52, 7182 (1981)CrossRefADSGoogle Scholar
  19. D.C. Wallace, Thermodynamics of Crystals (Wiley, New York, 1976) Google Scholar
  20. G.L. Raul, W. Taylor, J. Phys. C: Solid State Phys. 15, 1753 (1982)ADSGoogle Scholar
  21. H.R. Xia, L.X. Li, H. Yu et al., J. Mater. Res. 16, 3464 (2001)ADSGoogle Scholar
  22. N.D. Zhigadlo, M. Zhang, E.K.H. Salje, J. Phys.: Condens. Matter 13, 6551 (2001)ADSGoogle Scholar
  23. A.V. Vdovin, V.N. Moiseenko, V.S. Gorelik, Ya.V. Burak, Phys. Sol. State 43, 1648 (2001)CrossRefADSGoogle Scholar
  24. Ya.V. Burak, I.B. Trach, V.T. Adamiv, I.M. Teslyuk, Ukrain. Phys. J. 47, 923 (2002)Google Scholar
  25. V.N. Moiseenko, A.V. Vdovin, Ya.V. Burak, Optic and Spectroscopy 81, 620 (1996)Google Scholar
  26. H.R. Xia, S.M. Dong, Q.M. Lu et al., J. Raman Spect. 35, 148 (2004)Google Scholar
  27. O.V. Kovalev, Representations of the Crystallographic Space Groups: Irreducible Representations, Induced Representations, and Corepresentations (Gordon and Breach, Philadelphia, 1993) Google Scholar
  28. J. Kučera, P. Nachtigall, Collect. Czech. Chem. Commun. 68, 1848 (2003)Google Scholar
  29. H. Lammert, M. Kunow, A. Heuer, Phys. Rev. Lett. 90, 215901 (2003)ADSGoogle Scholar
  30. A. Heuer, M. Kunow, M. Vogel, R.D. Banhatti, Phys. Chem. Chem. Phys. 4, 3185 (2002)Google Scholar
  31. N.P. Techanovich, A.U. Sheleg, Ya.V. Burak, Phys. Sol. State 32, 2513 (1990)Google Scholar
  32. A.U. Sheleg, T.I. Dekola, N.P. Tekhanovich, A.M. Luginets, Phys. Sol. State 39, 624 (1997)Google Scholar
  33. V.V. Zaretskii, Ya.V. Burak, Phys. Sol. State 31, 960 (1989)Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2005

Authors and Affiliations

  1. 1.Institut für Festkörperphysik, Universität HannoverHannoverGermany
  2. 2.Theoretische Chemie, Universität HannoverHannoverGermany

Personalised recommendations