Chebyshev expansion approach to the AC conductivity of the Anderson model

Article

Abstract.

We propose an advanced Chebyshev expansion method for the numerical calculation of linear response functions at finite temperature. Its high stability and the small required resources allow for a comprehensive study of the optical conductivity \(\sigma(\omega)\) of non-interacting electrons in a random potential (Anderson model) on large three-dimensional clusters. For low frequency the data follows the analytically expected power-law behaviour with an exponent that depends on disorder and has its minimum near the metal-insulator transition, where also the extrapolated DC conductivity continuously goes to zero. In view of the general applicability of the Chebyshev approach we briefly discuss its formulation for interacting quantum systems.

Keywords

Optical Conductivity Anderson Model Matrix Element Density Disorder Strength Weak Disorder 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P.W. Anderson, Phys. Rev. 109, 1492 (1958)ADSCrossRefGoogle Scholar
  2. 2.
    D.J. Thouless, Physics Reports 13, 93 (1974); P.A. Lee, T.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985); B. Kramer, A. Mac Kinnon, Rep. Prog. Phys. 56, 1469 (1993)ADSCrossRefGoogle Scholar
  3. 3.
    E. Abrahams et al. , Phys. Rev. Lett. 42, 673 (1979)ADSCrossRefGoogle Scholar
  4. 4.
    K.B. Efetov, Adv. Phys. 32, 53 (1983)MathSciNetADSCrossRefGoogle Scholar
  5. 5.
    K. Slevin, T. Ohtsuki, Phys. Rev. Lett. 82, 382 (1999)ADSCrossRefGoogle Scholar
  6. 6.
    A. Mac Kinnon, B. Kramer, Z. Phys. B 53, 1 (1983)ADSCrossRefGoogle Scholar
  7. 7.
    F.J. Wegner, Z. Phys. B 25, 327 (1976)ADSCrossRefGoogle Scholar
  8. 8.
    K.B. Efetov, O. Viehweger, Phys. Rev. B 45, 11546 (1992)ADSCrossRefGoogle Scholar
  9. 9.
    M.R. Zirnbauer, Phys. Rev. B 34, 6394 (1986)MathSciNetADSCrossRefGoogle Scholar
  10. 10.
    B. Shapiro, E. Abrahams, Phys. Rev. B 24, 4889 (1981)ADSCrossRefGoogle Scholar
  11. 11.
    R. Oppermann, F. Wegner, Z. Phys. B 34, 327 (1979)ADSCrossRefGoogle Scholar
  12. 12.
    B. Shapiro, Phys. Rev. B 25, 4266 (1982)ADSCrossRefGoogle Scholar
  13. 13.
    N.F. Mott, Adv. Phys. 16, 49 (1967)ADSCrossRefGoogle Scholar
  14. 14.
    P. Lambrianides, H.B. Shore, Phys. Rev. B 50, 7268 (1994)ADSCrossRefGoogle Scholar
  15. 15.
    H. Shima, T. Nakayama, Phys. Rev. B 60, 14066 (1999)ADSCrossRefGoogle Scholar
  16. 16.
    R.C. Albers, J.E. Gubernatis, Phys. Rev. B 17, 4487 (1978)ADSCrossRefGoogle Scholar
  17. 17.
    A. Singh, W.L. McMillan, J. Phys. C 18, 2097 (1985)ADSCrossRefGoogle Scholar
  18. 18.
    M. Hwang, A. Gonis, A.J. Freeman, Phys. Rev. B 35, 8974 (1987)ADSCrossRefGoogle Scholar
  19. 19.
    T. Iitaka, in High Performance Computing in RIKEN 1997, Vol. 19 of RIKEN Review (Inst. Phys. Chem. Res. (RIKEN), Japan, 1998), pp. 136-143Google Scholar
  20. 20.
    R.N. Silver, H. Röder, Int. J. Mod. Phys. C 5, 935(1994)CrossRefGoogle Scholar
  21. 21.
    R.N. Silver et al. , J. Comp. Phys. 124, 115 (1996)MathSciNetADSMATHCrossRefGoogle Scholar
  22. 22.
    T. Iitaka, T. Ebisuzaki, Phys. Rev. Lett. 90, 047203(2003)ADSCrossRefGoogle Scholar
  23. 23.
    L.-W. Wang, A. Zunger, Phys. Rev. Lett. 73, 1039 (1994); L.-W. Wang, Phys. Rev. B 49, 10154 (1994)ADSCrossRefGoogle Scholar
  24. 24.
    R. Haydock, V. Heine, M.J. Kelly, J. Phys. C 5, 2845 (1972)ADSCrossRefGoogle Scholar
  25. 25.
    J. Jaklič, P. Prelovšek, Phys. Rev. B 49, 5065 (1994)ADSCrossRefGoogle Scholar
  26. 26.
    M. Aichhorn et al. , Phys. Rev. B 67, 161103 (2003)ADSCrossRefGoogle Scholar
  27. 27.
    More details to be published elsewhereGoogle Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.School of PhysicsThe University of New South WalesSydneyAustralia

Personalised recommendations