Advertisement

Equation of motion method for composite field operators

Article

Abstract.

The Green’s function formalism in Condensed Matter Physics is reviewed within the equation of motion approach. Composite operators and their Green’s functions naturally appear as building blocks of generalized perturbative approaches and require fully self-consistent treatments in order to be properly handled. It is shown how to unambiguously set the representation of the Hilbert space by fixing both the unknown parameters, which appear in the linearized equations of motion and in the spectral weights of non-canonical operators, and the zero-frequency components of Green’s functions in a way that algebra and symmetries are preserved. To illustrate this procedure some examples are given: the complete solution of the two-site Hubbard model, the evaluation of spin and charge correlators for a narrow-band Bloch system, the complete solution of the three-site Heisenberg model, and a study of the spin dynamics in the Double-Exchange model.

Keywords

Hilbert Space Function Formalism Complete Solution Hubbard Model Spin Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    It is also possible to have fermionic systems with occupation numbers per site equal to either 0 or 1 independently from the spin (e.g., the t-J model) or just fixed to 1 (e.g., the spin-\(\frac12\) Heisenberg model)Google Scholar
  2. 2.
    N. Bogoliubov, S. Tyablikov, Dokl. Akad. Nauk. USSR 126, 53 (1959)Google Scholar
  3. 3.
    H. Mori, Progr. Theor. Phys. 33, 423 (1965)MATHGoogle Scholar
  4. 4.
    D.J. Rowe, Rev. Mod. Phys. 40, 153 (1968)CrossRefGoogle Scholar
  5. 5.
    L.M. Roth, Phys. Rev. 184, 451 (1969)CrossRefGoogle Scholar
  6. 6.
    W. Nolting, Z. Phys. 255, 25 (1972)Google Scholar
  7. 7.
    Y.A. Tserkovnikov, Teor. Mat. Fiz. 49, 219 (1981)MathSciNetGoogle Scholar
  8. 8.
    W. Nolting, W. Borgiel, Phys. Rev. B 39, 6962 (1989)CrossRefGoogle Scholar
  9. 9.
    N.M. Plakida, V.Y. Yushankhai, I.V. Stasyuk, Physica C 162-164, 787 (1989)Google Scholar
  10. 10.
    A.J. Fedro, Y. Zhou, T.C. Leung, B.N. Harmon, S.K. Sinha, Phys. Rev. B 46, 14785 (1992)Google Scholar
  11. 11.
    P. Fulde, Electron Correlations in Molecules and Solids, 3rd edn. (Springer-Verlag, 1995),Google Scholar
  12. 12.
    F. Mancini, S. Marra, H. Matsumoto, Physica C 244, 49 (1995)Google Scholar
  13. 13.
    A. Avella, F. Mancini, D. Villani, L. Siurakshina, V.Y. Yushankhai, Int. J. Mod. Phys. B 12, 81 (1998)Google Scholar
  14. 14.
    S. Ishihara, H. Matsumoto, S. Odashima, M. Tachiki, F. Mancini, Phys. Rev. B 49, 1350 (1994)CrossRefGoogle Scholar
  15. 15.
    V. Vaks, A. Larkin, S. Pikin, Sov. Phys. JETP 26, 188 (1962)Google Scholar
  16. 16.
    R. Zaitsev, Sov. Phys. JETP 43, 574 (1976)Google Scholar
  17. 17.
    Y. Izyumov, B. Letfulov, J. Phys.: Condens. Matter 2, 8905 (1990)Google Scholar
  18. 18.
    H. Umezawa, Advanced Field Theory: Micro, Macro and Thermal Physics (A.I.P., New York, 1993), and references thereinGoogle Scholar
  19. 19.
    J.C. Ward, Phys. Rev. 78, 182 (1950)MATHGoogle Scholar
  20. 20.
    We can choose: the higher order fields emerging from the equations of motion (i.e., the conservation of some spectral moments is assured) [37], the eigenoperators of some relevant interacting terms (i.e., the relevant interactions are correctly treated) [38], the eigenoperators of the problem reduced to a small cluster [39], the composite field describing the Kondo-like singlet emerging at low-energy in any electronic spin system [40], ...Google Scholar
  21. 21.
    N. Mermin, H. Wagner, Phys. Rev. Lett. 17, 1133 (1966)CrossRefGoogle Scholar
  22. 22.
    We choose fermionic operators to study the local, thermodynamic and single-particle properties and bosonic ones to analyze the response functionsGoogle Scholar
  23. 23.
    D.N. Zubarev, Sov. Phys. Uspekhi 3, 320 (1960)Google Scholar
  24. 24.
    D. Zubarev, Non Equilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974)Google Scholar
  25. 25.
    R. Kubo, J. Phys. Soc. Jpn 12, 570 (1957)MATHGoogle Scholar
  26. 26.
    H. Callen, R. Swendsen, R. Tahir-Kheli, Phys. Lett. A 25, 505 (1967)Google Scholar
  27. 27.
    M. Suzuki, Physica 51, 277 (1971)CrossRefGoogle Scholar
  28. 28.
    D.L. Huber, Physica A 87, 199 (1977)Google Scholar
  29. 29.
    V. Aksenov, H. Konvent, J. Schreiber, Phys. Status Solids (b) 88, K43 (1978)Google Scholar
  30. 30.
    V. Aksenov, J. Schreiber, Phys. Lett. A 69, 56 (1978)CrossRefMathSciNetGoogle Scholar
  31. 31.
    V. Aksenov, M. Bobeth, N. Plakida, J. Schreiber, J. Phys. C. 20, 375 (1987)Google Scholar
  32. 32.
    F. Mancini, A. Avella, Condens. Matter Phys. 1, 11 (1998)Google Scholar
  33. 33.
    A. Avella, F. Mancini, T. Saikawa (2001), cond-mat/0103610Google Scholar
  34. 34.
    C. Zener, Phys. Rev. B 82, 403 (1951)CrossRefGoogle Scholar
  35. 35.
    F. Mancini, N. Perkins, N. Plakida, Phys. Lett. A 284, 286 (2001)Google Scholar
  36. 36.
    S. Tyablikov, Methods in Quantum Theory of Magnetism (Plenum Press, New York, 1967)Google Scholar
  37. 37.
    F. Mancini, Phys. Lett. A 249, 231 (1998)CrossRefGoogle Scholar
  38. 38.
    A. Avella, F. Mancini, S. Odashima, Physica C 388, 76 (2003)Google Scholar
  39. 39.
    A. Avella, F. Mancini, S. Odashima, preprint of the University of Salerno, to be published in Magn. Magn. Mater.Google Scholar
  40. 40.
    D. Villani, E. Lange, A. Avella, G. Kotliar, Phys. Rev. Lett. 85, 804 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.Dipartimento di Fisica “E.R. Caianiello”-Unitá di Ricerca INFM di SalernoUniversitá degli Studi di SalernoBaronissi (SA)Italy

Personalised recommendations