Advertisement

Effect of electron-phonon interaction on surface states in zinc-blende GaN, AlN, and InN under pressure

  • Z. W. Yan
  • S. L. Ban
  • X. X. Liang
OriginalPaper

Abstract.

A variational approach is used to study the surface states of electrons in a semi-infinite polar semiconductor under hydrostatic pressure. The effective Hamiltonian and the surface-state levels are derived including the effects of electron-optical phonon interaction and pressure. The numerical computation has been performed for the surface-state energies versus pressure for zinc-blende GaN, AlN, and InN. The results show that the effect of electron-optical phonon interaction lowers the surface-state energy. It is also found that the effect of electron-surface optical phonon interaction is much bigger than the effect of electron-half space longitudinal optical phonon interaction for surface-state levels. It indicates that the surface-state energies and the influence of electron-phonon interaction increase with pressure obviously.

Keywords

Numerical Computation Surface State Hydrostatic Pressure Variational Approach Optical Phonon 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Nakamura, The Blue Laser Diode-GaN Based Light Emitters and Lasers (Springer, Berlin, 1997)Google Scholar
  2. 2.
    S. Strite, H. Morkoc, J. Vac. Sci. Technol. B 10, 1237 (1992)CrossRefGoogle Scholar
  3. 3.
    J.-M. Wagner, F. Bechstedt, Phys. Rev. B 62, 4526 (2000)CrossRefGoogle Scholar
  4. 4.
    A.R. Goñi, H. Siegle, K. Syassen, C. Thomsen, J.-M. Wagner, Phys. Rev. B 64, 035205 (2001)CrossRefGoogle Scholar
  5. 5.
    P. Perlin, T. Suski, J.W. Ager III, G. Conti, A. Plian, N.E. Christensen, I. Gorczyca, I. Grzegory, E.R. Weber, E.E. Haller, Phys. Rev. B 60, 1480 (1999)CrossRefGoogle Scholar
  6. 6.
    W. Seifert, A. Tempel, Phys. Status Solidi (a) 23, K39 (1974)Google Scholar
  7. 7.
    W.R.L. Lambrecht, B. Segall, Phys. Rev. B 43, 7070 (1991)CrossRefGoogle Scholar
  8. 8.
    S.G. Davison, M. Steslicka, Basic Theory of Surface States (Clarendon Press, Oxford, 1992), Chap. 5Google Scholar
  9. 9.
    F. Garcia-Moliner, F. Flores, J. Phys. C 9, 1609 (1976)CrossRefGoogle Scholar
  10. 10.
    J.B. Pantry, S.J. Gurman, Surf. Sci. 49, 87 (1975)CrossRefGoogle Scholar
  11. 11.
    X.X. Liang, Z.W. Yan, Surf. Sci. 400, 232 (1998)CrossRefGoogle Scholar
  12. 12.
    Z.W. Yan, X.X. Liang, Solid State Commun. 110, 451 (1999)CrossRefGoogle Scholar
  13. 13.
    E. Evans, D.L. Mills, Phys. Rev. B 8, 4004 (1973)CrossRefGoogle Scholar
  14. 14.
    N. Mori, T. Ando, Phys. Rev. B 40, 6175 (1989)CrossRefGoogle Scholar
  15. 15.
    X.X. Liang, S.G. Davison, Surface Science, 298, 225 (1993)Google Scholar
  16. 16.
    F.M. Peeters, J.T. Devreese, Phys. Rev. B 36, 4442 (1987)CrossRefGoogle Scholar
  17. 17.
    A.R. Goñi, K. Syassen, M. Cardona, Phys. Rev. B 41, 10104 (1990)CrossRefGoogle Scholar
  18. 18.
    M. Holtz, M. Seon, O. Brafman, R. Manor, D. Fekete, Phys. Rev. B 54, 8714 (1996)CrossRefGoogle Scholar
  19. 19.
    S.H. Wei, A. Zunger, Phys. Rev. B 60, 5404 (1999)CrossRefGoogle Scholar
  20. 20.
    P. Lefebvre, B. Gil, H. Mathieu, Phys. Rev. B 35, 5630 (1987)CrossRefGoogle Scholar
  21. 21.
    B. Sukumar, K. Navaneethakrishana, Phys. Status Solidi (b) 158, 193 (1990)Google Scholar
  22. 22.
    T.D. Lee, F.E. Low, D.Pines, Phys. Rev. 90, 297 (1953)CrossRefMATHGoogle Scholar
  23. 23.
    J.A. Tuchman, S. Kim, Z. Sui, I.P. Herman, Phys. Rev. B 46, 13371 (1992)CrossRefGoogle Scholar
  24. 24.
    D.R. Penn, Phys. Rev. 128, 2093 (1962)CrossRefMATHGoogle Scholar
  25. 25.
    J.A. Van Vechten, Phys. Rev. 182, 891 (1969)CrossRefGoogle Scholar
  26. 26.
    J.C. Phillips, Bonds and Bands in Semiconductors (Academic Press, 1973)Google Scholar
  27. 27.
    P. Giannozzi, S. De Gironcoli, P. Pavone, S. Baroni, Phys. Rev. B 45, 10123 (1992)Google Scholar
  28. 28.
    C. Bungaro, K. Rapcewicz, J. Bernholc, Phys. Rev. B 61, 6720 (2000)CrossRefGoogle Scholar
  29. 29.
    I. Vurgaftman, I.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)CrossRefGoogle Scholar
  30. 30.
    K. Kim, W.R.L. Lambrecht, B. Segall, Phys. Rev. B 53, 16310 (1996)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2003

Authors and Affiliations

  1. 1.CCAST (World Laboratory)BeijingP.R. China
  2. 2.Department of PhysicsInner Mongolia UniversityHohhotP.R. China
  3. 3.Department of Basic SciencesInner Mongolia Agricultural UniversityHohhotP.R. China

Personalised recommendations