Skip to main content
Log in

Synthesis of \(\mathsf{\gamma}\)-Fe\(\mathsf{_2}\)O\(\mathsf{_3}\) nanoparticles coated on silica spheres: Structural and magnetic properties

  • Original Paper
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

The structural and magnetic properties of \(\gamma\)-Fe2O3 nanoparticles dispersed on silica spheres prepared by sol-gel method were investigated. The properties of \(\gamma\)-Fe2O3 nanoparticles without silica were compared with those on silica spheres. Both the nanoparticle assemblages were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), Mössbauer (20, 80 and 300 K) and electron paramagnetic resonance (EPR) (80, 300 K) measurements. The XRD spectra clearly indicated the formation of pure \(\gamma\)-Fe2O3 nanoparticles and the absence of any other form of iron oxide. TEM images showed a uniform distribution of the nanoparticles of size \(\sim\)6 nm on the surfaces of silica spheres (diameter \(\sim\) 35-60 nm). The size of the individual nanoparticles (without silica) varied within 5-6 nm. The low temperature (20 K) Mössbauer spectra consisted of a partially split sextet superimposed on a doublet. The partial magnetic splitting of the sextet at 20 K revealed the effect of surface magnetization and surface modifications of the \(\gamma\)-Fe2O3 nanoparticles coated on silica spheres. The gradual collapse of the partially split sextet into a doublet with increasing temperature indicated the superparamagnetic relaxation exhibited by the \(\gamma\)-Fe2O3 nanoparticles with/without silica. The surface magnetization arising out of mis-aligned spins at the surface as evidenced by Mössbauer spectra was further confirmed by electron paramagnetic resonance (EPR) studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Magnetic Properties of Fine Particles, edited by J.L. Dormann, D. Fiorani (North- Holland, Amsterdam, 1992)

  2. K. Haneda, Can. J. Phys. 65, 1233 (1987)

    Google Scholar 

  3. C.B. Murray, C.R. Kagan, M.G. Wendi, Science 270, 1335 (1995)

    CAS  Google Scholar 

  4. M.P. Pileni, J. Phys. Chem. B 105, 3358 (2001)

    Article  Google Scholar 

  5. R.D. Shull, J.J. Ritter, A.J. Shapiro, L.J. Swartzendruber, L.H. Bennett, J. Appl. Phys. 67, 4490 (1990)

    Article  Google Scholar 

  6. M.A. Kastner, Phys. Today 46, 24 (1993)

    Google Scholar 

  7. J.M.D. Coey, Phys. Rev. Lett. 27, 1140 (1971)

    Article  Google Scholar 

  8. O. Eriksson, A.M. Boring, R.C. Albers, G.W. Fernando, B.R. Cooper, Phys. Rev. B 45, 2868 (1992)

    Article  Google Scholar 

  9. A.H. Morrish, K. Haneda, J. Appl. Phys. 52, 2496 (1981)

    Article  Google Scholar 

  10. Q.A. Pankhurst, R.J. Pollard, Phys. Rev. Lett. 67, 248 (1991)

    Article  Google Scholar 

  11. R.H. Kodama, A.E. Berkowitz, Phys. Rev. B. 59, 6321 (1999)

    Article  Google Scholar 

  12. O. Iglesias, A. Labarta, Phys. Rev. B 63, 184416 (2001)

    Article  Google Scholar 

  13. H. Kachkachi, A. Ezzir, M. Nogues, E. Tronc, Eur. Phys. J. B 14, 681 (2000)

    Article  Google Scholar 

  14. G. Ennas, A. Musinu, G. Piccaluga, D. Zedda, D. Gatteschi, G. Sangrogorio, J.L. Stanges, G. Concas, G. Spano, Chem. Mater. 10, 495 (1998)

    Article  Google Scholar 

  15. A.E. Berkowitz, in Nanomaterials: Synthesis, Properties and Applications, edited by S. Edelstein, R.C. Cammarata (Institute of Physics Publishing, Bristol, 1996)

  16. MRS Bulletin 15, 31 (1990)

  17. T. Yoshio, C. Kawaguchi, F. Kanamaru, K. Takahashi, J. Non-Cryst. Solids. 43, 12 (1981)

    Google Scholar 

  18. T. Lopez, J. Mendez, T. Zamudio, M. Villa, Mater. Chem. Phys. 30, 161 (1992)

    Article  Google Scholar 

  19. C. Cannas, D. Gatteschi, A. Masinu, G. Piccaluga, C. Sangregorio, J. Phys. Chem. B 102, 7721 (1998)

    Article  Google Scholar 

  20. M.P. Morales, M.J. Munoz-Aguado, J.L. Garcia-Placios, F.J. Lazaro, C.C.J. Serna, J. Magn. Magn. Mater. 183, 232 (1998)

    Article  Google Scholar 

  21. S. Ramesh, I. Felner, Y. Koltypin, A. Gedanken, J. Mat. Res. 15, 944 (2000)

    Google Scholar 

  22. N.J. Cherepy, D.B. Liston, J.A. Lovejoy, H. Deng, J.Z. Zheng, J. Phys. Chem. B. 102, 770 (1998)

    Article  Google Scholar 

  23. W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci. 26, 62 (1968)

    Google Scholar 

  24. M. Chaterjee, D. Ganguli, Trans. Ind. Ceram. Soc. 45, 95 (1986)

    Google Scholar 

  25. E. von Meerwall, Comp. Phys. Commun. 9, 117 (1975)

    Article  Google Scholar 

  26. A. Slawska-Waniewska, M. Gutowski, H.K. Lachowicz, T. Kulik, H. Matyja, Phys. Rev. B 46, 14 594 (1992)

    Article  Google Scholar 

  27. L. Neel, Ann. Geophys. 5, 99 (1949)

    Google Scholar 

  28. S. Mørup, J.A. Dumesic, H. Topsoe, Applications of Mössbauer Spectroscopy, edited by R.L. Cohen Vol. II (Academic, New York, 1980), p. 1

  29. W.F. Brown, Jr., Phys. Rev. 130, 1677 (1963)

    Article  Google Scholar 

  30. A.H. Morrish, K. Haneda, J. Magn. Magn. Mater. 35, 105 (1983)

    Article  Google Scholar 

  31. S. Mørup, E. Tronc, Phys. Rev. Lett. 72, 3278 (1994)

    Article  Google Scholar 

  32. S. Mørup, F. Bødker, P.V. Hendriksen, S. Linderoth, Phys. Rev. B 52, 287 (1995)

    Article  Google Scholar 

  33. S. Mørup, M.B. Madsen, J. Franck, J. Villadsen, C.J.W. Koch, J. Magn. Magn. Mater. 40, 163 (1983)

    Google Scholar 

  34. S. Linderoth, M.D. Bentzon, S. Mørup, Nucl. Instrum. Methods Phys. Res. B 76, 173 (1993)

    Article  Google Scholar 

  35. F. Bødker, S. Morup, S. Linderoth, Phys. Rev. Lett. 72, 282 (1994)

    Article  Google Scholar 

  36. S. Mørup, J. Magn. Magn. Mater. 37, 39 (1983)

    Google Scholar 

  37. D. Goldfarb, M. Bernardo, K.G. Strohmaier, D.E.W. Vaughan, H. Thomann, J. Am. Chem. Soc. 116, 6344 (1994)

    Google Scholar 

  38. A. Jitianu, M. Crisan, A. Meghea, H. Rau, M. Zaharescu, J. Mater. Chem. 12, 1401 (2002)

    Article  Google Scholar 

  39. D. Prodan, V.V. Grecu, M.N. Grecu, E. Tronc, J.P. Jolivet, Meas. Sci. Technol. 10, L-41 (1999)

    Google Scholar 

  40. S. Roy, D. Ganguli, J. Non-Cryst. Sol. 195, 38 (1996)

    Article  Google Scholar 

  41. K. Tanaka, K. Kamiya, M. Matsuoka, T. Yoko, J. Non-Cryst. Sol. 94, 365 (1987)

    Google Scholar 

  42. J.L. Dormann, D. Fiorani, E. Tronc, Adv. Chem. Phys. 98, 283 (1997)

    Google Scholar 

  43. R.D. Sánchez, M.A. López-Quintela, J. Rivas, A. González-Penedo, A.J. Garc\`ia-Bastida, C.A. Ramos, R.D. Zysler, S. Ribeiro Guevara, J. Phys. Cond. Matt. 11, 5643 (1999)

    Article  Google Scholar 

  44. S.E. Dapurkar, P. Sevlam, Mater. Phys. Mech. 4, 13 (2001)

    Google Scholar 

  45. M. Ibrahim, G. Edwards, B. Ganguly, G.P. Huffman, J. Appl. Phys. 75, 5873 (1994)

    Article  Google Scholar 

  46. H. Kodera, J. Phys. Soc. Jpn 28, 89 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Chaudhuri.

Additional information

Received: 24 March 2003, Published online: 4 August 2003

PACS:

81.20.Fw Sol-gel processing - 76.80.+y Mössbauer effect - 76.30.-v Electron paramagnetic resonance studies

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakrabarti, S., Mandal, S.K., Nath, B.K. et al. Synthesis of \(\mathsf{\gamma}\)-Fe\(\mathsf{_2}\)O\(\mathsf{_3}\) nanoparticles coated on silica spheres: Structural and magnetic properties. Eur. Phys. J. B 34, 163–171 (2003). https://doi.org/10.1140/epjb/e2003-00208-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2003-00208-2

Keywords

Navigation