Skip to main content
Log in

Solvation of Ethanol, Phenol, and o-Methoxyphenol in Dilute Aqueous Solutions under Normal and Supercritical Conditions

  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The structure of 2 wt % aqueous solutions of ethanol, phenol, and o-methoxyphenol (guaiacol) was modeled in NVT ensemble using the classical molecular dynamics method at densities of 0.997 and 0.133 g/cm3 corresponding to the normal (298 K, 0.1 MPa) and supercritical (673 K, 23.0 MPa) conditions. The self-diffusion coefficients were calculated for individual components in solutions; the radial distribution functions were calculated for the oxygen atoms of water molecules, oxygen atoms of hydroxyl groups, and centers of mass in phenol molecules. The possibility of clusterization of solute molecules was analyzed. The data obtained suggest heterogeneity of solutions, in which clusters of different compositions and structures can exist. Clusterization of up to seven ethanol and phenol molecules can occur under normal conditions, and dimerization was detected under SC conditions. The structural features of solutions under normal and SC conditions were compared. The difference in the formation of hydration shells of ethanol and phenols molecules was demonstrated. Stable shells of water molecules form around ethanol molecules under normal conditions. For phenols, the solvation shells are unstable, with a pronounced tendency toward clusterization of organic molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Corma, S. Iborra, and A. Velty, Chem. Rev. 107, 2411 (2007).

    Article  CAS  Google Scholar 

  2. H. Lasa, E. Salaices, J. Mazumder, and R. Lucky, Chem. Rev. 111, 5404 (2011).

    Article  Google Scholar 

  3. X. Wang, J. Zhou, H. Li, and G. Sun, Adv. Mater. Res. 821–822, 1126 (2013).

    Article  Google Scholar 

  4. V. I. Bogdan, A. V. Kondratyuk, A. E. Koklin, and V. V. Lunin, Russ. J. Phys. Chem. B 11, 1207 (2017).

    Article  CAS  Google Scholar 

  5. A. V. Kondratyuk, A. L. Kustov, V. V. Lunin, A. E. Koklin, and V. I. Bogdan, in Proceedings of the 8th Conference with International Participation on Supercritical Fluids: Fundamentals, Technologies, Innovations, Zelenogradsk, Russia, Sept 14–19, 2015 (Kaliningrad, 2015), p. 219.

  6. O. N. Fedyaeva and A. A. Vostrikov, Russ. J. Phys. Chem. B 6, 844 (2012).

    Article  CAS  Google Scholar 

  7. M. J. Abraham, D. Spoel, E. Lindahl, and B. Hess (GROMACS Development Team), GROMACS User Manual, Version 5.0.7 (2015).

  8. W. L. Jorgensen, D. S. Maxwell, and J. Tirado-Rives, J. Am. Chem. Soc. 118, 11225 (1996).

    Article  CAS  Google Scholar 

  9. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, et al., J. Chem. Phys. 79, 926 (1983).

    Article  CAS  Google Scholar 

  10. Thermophysical Properties of Fluid Systems. http://webbook.nist.gov.chemistry.fluid.

  11. M. Smiechowski, C. Schran, H. Forbert, and D. Marx, Phys. Rev. Lett. 116, 027801 (2016).

    Article  Google Scholar 

  12. Yu. E. Gorbatyi and G. V. Bondarenko, Sverkhkt. Flyuidy: Teor. Prakt. 2 (2), 5 (2007).

    Google Scholar 

  13. P. M. Zorkii, L. V. Lanshina, and T. V. Bogdan, J. Struct. Chem. 49, 524 (2008).

    Article  CAS  Google Scholar 

  14. A. Wakisaka and K. Matsuura, J. Mol. Liq. 129, 25 (2006).

    Article  CAS  Google Scholar 

  15. K. Mizuse, T. Hamashima, and A. Fujii, J. Phys. Chem. A 113, 12134 (2009).

    Article  CAS  Google Scholar 

  16. T. Hamashima, K. Mizuse, and A. Fujii, J. Phys. Chem. A 115, 620 (2011).

    Article  CAS  Google Scholar 

  17. R. Parthasarathi, V. Subramanian, and N. Sathyamurthy, J. Phys. Chem. A 109, 843 (2005).

    Article  CAS  Google Scholar 

  18. A. Plugatyr and I. M. Svishchev, J. Phys. Chem. B 115, 2555 (2011).

    Article  CAS  Google Scholar 

  19. A. Plugatyr and I. M. Svishchev, J. Chem. Phys. 124, 024507 (2006).

    Article  Google Scholar 

  20. K. P. Gierszal, J. Davis, et al., Chem. Phys. Lett. 2, 2930 (2011).

    Article  CAS  Google Scholar 

  21. N. Zhang, X. Ruan, Y. Song, Z. Li, and G. He, J. Mol. Liq. 221, 942 (2016).

    Article  CAS  Google Scholar 

  22. N. F. Bunkin, A. V. Shkirin, G. A. Lyakhov, et al., J. Chem. Phys. 145, 184501 (2016).

    Article  CAS  Google Scholar 

  23. P. Changsuwana, N. Paksunga, Sh. Inoue, T. Inouel, Yo Rfwai, T. Noguchi, H. Tanigawa, and Yu. Matsumura, J. Supercrit. Fluids 142, 32 (2018).

    Article  Google Scholar 

Download references

Funding

This study was financially supported by the Russian Foundation for Basic Research (grant no. 18-29-06072).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Bogdan.

Additional information

Translated by L. Smolina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alekseev, E.S., Bogdan, T.V. Solvation of Ethanol, Phenol, and o-Methoxyphenol in Dilute Aqueous Solutions under Normal and Supercritical Conditions. Russ. J. Phys. Chem. B 14, 1217–1224 (2020). https://doi.org/10.1134/S1990793120070209

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793120070209

Navigation