Skip to main content
Log in

Structure of Associated Mixtures with Various Number of Intermolecular Bonds: Numerical Simulation

  • PHYSICAL METHODS FOR STUDYING CHEMICAL REACTIONS
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

Using models of thermoassociated polymers, a cellular model of associated solutions is developed for cases where molecules of a solute are able to form from 2 to 6 bonds with each other. It is shown that solutions associated by weak intermolecular interactions in a certain range of concentrations can be considered as systems of flickering pseudo-polymeric macromolecules with a fractal structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. D. N. Tarasov and R. P. Tiger, J. Comput. Chem. 29, 220 (2008).

    Article  CAS  PubMed  Google Scholar 

  2. D. N. Tarasov and R. P. Tiger, Khim. Fiz. 24 (1), 42 (2005).

    CAS  Google Scholar 

  3. D. N. Tarasov and R. P. Tiger, Khim. Fiz. 25 (5), 23 (2006).

    Google Scholar 

  4. M. Misawa, I. Dairoku, A. Honma, T. Sato, K. Maruyama, et al., J. Chem. Phys. 121, 4716 (2004).

    Article  CAS  PubMed  Google Scholar 

  5. M. Misawa, T. Sato, and A. Onozuka, J. Appl. Crystallogr. 40, 93 (2007).

    Article  CAS  Google Scholar 

  6. E. Brini, C. J. Fennell, M. Fernandez-Serra, B. Hribar-Lee, M. Lukšič, et al., Chem. Rev. 117, 12385 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. R. Li, C. D’Agostino, J. McGregor, M. D. Mantle, J. A. Zeitler, and L. F. Gladden, J. Phys. Chem. B 118, 10156 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. O. Mishima and H. E. Stanley, Nature (London, U.K.) 396, 329 (1998).

    Article  CAS  Google Scholar 

  9. G. Matisz, A.-M. Kelterer, W. M. F. Fabian, and S. Kunsági-Máte, Phys. Chem. Chem. Phys. 17, 8467 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. M. Požar, B. Lovrinčević, L. Zoranić, T. Primorać, F. Sokolić, et al., Phys. Chem. Chem. Phys. 18, 23971 (2016).

    Article  CAS  PubMed  Google Scholar 

  11. W. Wrzeszcz, S. Mazurek, R. Szostak, P. Tomza, and M. A. Czarnecki, Spectrochim. Acta, A 188, 349 (2018).

    Article  CAS  Google Scholar 

  12. P. Tomza, W. Wrzeszcz, S. Mazurek, R. Szostak, and M. A. Czarnecki, Spectrochim Acta, A 197, 88 (2018).

    Article  CAS  Google Scholar 

  13. D. N. Tarasov, R. P. Tiger, S. G. Entelis, A. V. Gorshkov, and S. V. Zaporozhskaya, Kinet. Catal. 38, 474 (1997).

    CAS  Google Scholar 

  14. D. N. Tarasov, R. P. Tiger, S. G. Entelis, A. V. Gorshkov, and M. A. Levina, Kinet. Catal. 40, 28 (1999).

    CAS  Google Scholar 

  15. R. P. Tiger, M. A. Levina, S. G. Entelis, and M. V. Andreev, Kinet. Catal. 43, 662 (2002).

    Article  CAS  Google Scholar 

  16. A. C. Draye, J.-J. Tondeur, and D. N. Tarasov, React. Kinet. Catal. Lett. 66, 199 (1999).

    Article  CAS  Google Scholar 

  17. A. A. Neverov, S. A. Deiko, and A. K. Yatsimirskii, Kinet. Katal. 30, 793 (1989).

    Google Scholar 

  18. W. P. Huskey, C. T. Warren, and J. L. Hogg, Org. Chem. 46, 59 (1981).

    Article  CAS  Google Scholar 

  19. D. N. Tarasov and R. P. Tiger, Russ. J. Phys. Chem. B 7, 574 (2013).

    Article  CAS  Google Scholar 

  20. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, 2nd ed. (Oxford Univ. Press, New York, 2017).

    Book  Google Scholar 

  21. K. Binder, Monte Carlo and Molecular Dynamics Simulations in Polymer Science (Oxford Univ. Press, New York, 1995).

    Google Scholar 

  22. I. Carmesin and K. Kremer, Macromolecules 21, 2819 (1988).

    Article  CAS  Google Scholar 

  23. S. Shaffer, J. Chem. Phys. 101, 4205 (1994).

    Article  CAS  Google Scholar 

  24. C. C. Chen and E. E. Dormidontova, Macromolecules 37, 3905 (2004).

    Article  CAS  Google Scholar 

  25. F. F. Karl, J. Chem. Phys. 136, 244904 (2012).

    Article  CAS  Google Scholar 

  26. Z. Li, H. Djohari, and E. E. Dormidontova, J. Chem. Phys. 133, 184904 (2010).

    Article  CAS  PubMed  Google Scholar 

  27. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ., Ithaca, London, 1979).

    Google Scholar 

  28. I. M. Lifshits, A. Yu. Grosberg, and A. R. Khokhlov, Sov. Phys. Usp. 22, 123 (1979).

    Article  Google Scholar 

  29. B. M. Smirnov, Sov. Phys. Usp. 29, 481 (1986).

    Article  Google Scholar 

Download references

FUNDING

This work was performed in terms of the RF Government task (theme V 45.5, 0082-2014-0015, АААА-А17-117032750201-9); it was supported by the Russian Foundation for Basic Research (project no. 17-03-00146).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Tarasov.

Additional information

Translated by P. Vlasov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tarasov, D.N., Tiger, R.P. Structure of Associated Mixtures with Various Number of Intermolecular Bonds: Numerical Simulation. Russ. J. Phys. Chem. B 13, 478–485 (2019). https://doi.org/10.1134/S1990793119030138

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793119030138

Keywords:

Navigation