Skip to main content
Log in

Potential of Carbon, Silicon, Boron Nitride and Aluminum Phosphide Nanocages as Anodes of Lithium, Sodium and Potassium Ion Batteries: A DFT Study

  • Electric and Magnetic Properties of Materials
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

In this study, the potential of boron nitride (B21N21), aluminum phosphide (Al21P21), carbon (C24) and silicon (Si24) nanocages as anode electrodes of Lithium-ion (Li-ion), Sodium-ion (Na-ion) and Potassium-ion (K-ion) batteries has been investigated. The effects of halogen adoption of studied nanocages on ability of metal-ion batteries have been examined. Results show that the Al21P21 nanocage as anode electrode in metal-ion batteries has higher potential than B21N21, C24 and Si24 nanocages. It’s found that the K-ion battery has higher cell voltage and higher performance than Li-ion and Na-ion batteries; the halogen adoption of studied nanocages increases the cell voltage of metal-ion batteries; the Fluorine F-doped metal-ion batteries have higher cell voltage than Chlorine Cl- and Bromine Br-doped metal-ion batteries. Finally, the F-doped Al20P21 was proposed as novel anode electrode in K-ion battery with the highest performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. D. Slater, D. Kim, E. Lee, and C. S. Johnson, Adv. Funct. Mater. 23, 947 (2013).

    Article  CAS  Google Scholar 

  2. Z. K. Ghouri, and A. Zahoor, Superlatt. Microstruct. 90, 184 (2016).

    Article  CAS  Google Scholar 

  3. J. Barker, M. Y. Saidi, and J. L. Swoyer, Electrochem. Solid-State Lett. 6, 1 (2003).

    Article  CAS  Google Scholar 

  4. D. Er, J. Li, and M. Naguib, ACS Appl. Mater. Interfaces 6, 11173 (2014).

    Article  CAS  PubMed  Google Scholar 

  5. P. Hu, X. Wang, and T. Wang, Adv. Sci. 3, 1600112 (2016).

    Article  CAS  Google Scholar 

  6. P. Hu, X. Wang, and J. Ma, Z. Zhang, Nano Energy 26, 382 (2016).

    Article  CAS  Google Scholar 

  7. V. Palomares, P. Serras, and I. Villaluenga, Energy Environ. Sci. 5, 5884 (2012).

    Article  CAS  Google Scholar 

  8. B. J. Landi, M. J. Ganter, and C. D. Cress, Energy Environ. Sci. 2, 638 (2009).

    Article  CAS  Google Scholar 

  9. J. Beheshtian, and A. A. Peyghan, Struct. Chem. 23, 1567 (2012).

    Article  CAS  Google Scholar 

  10. A. A. Salari, Inorg. Chim. Acta 456, 18 (2017).

    Article  CAS  Google Scholar 

  11. O. Bariş Malcioğlu, and S. Erkoç, J. Mol. Graphics Model. 23, 367 (2005).

    Article  CAS  Google Scholar 

  12. Z. Bagheri, and A. A. Peyghan, Comput. Theor. Chem. 1008, 20 (2013).

    Article  CAS  Google Scholar 

  13. N. L. Hadipour, and A. Ahmadi Peyghan, J. Phys. Chem. C 119, 6398 (2015).

    Article  CAS  Google Scholar 

  14. A. Khataee, G. Bayat, and J. Azamat, J. Mol. Graphics Model. 71, 176 (2017).

    Article  CAS  Google Scholar 

  15. A. A. Peyghan, S. F. Rastegar, and N. L. Hadipour, Phys. Lett. A 378, 2184 (2014).

    Article  CAS  Google Scholar 

  16. J. Beheshtian, A. A. Peyghan, and M. Noei, Sens. Actuators, B 181, 829 (2013).

    Article  CAS  Google Scholar 

  17. Z. Mahdavifar, J. Mol. Graphics Model. 54, 32 (2014).

    Article  CAS  Google Scholar 

  18. J. Beheshtian and A. Ahmadi Peyghan, Phys. E (Amsterdam, Neth.) 44, 1963 (2012).

    Article  CAS  Google Scholar 

  19. J. Beheshtian, A. Ahmadi Peyghan, and Z. Bagheri, J. Mol. Model. 19, 255 (2012).

    Article  CAS  PubMed  Google Scholar 

  20. J. Beheshtian, Monatsh. Chem. 143, 1623 (2012).

    Article  CAS  Google Scholar 

  21. J. Beheshtian, A. A. Peyghan, and Z. Bagheri, Appl. Surf. Sci. 259, 631 (2012).

    Article  CAS  Google Scholar 

  22. J. Beheshtian and H. Soleymanabadi, Appl. Surf. Sci. 268, 436 (2012).

    Article  CAS  Google Scholar 

  23. J. Beheshtian and A. A. Peyghan, Comput. Theor. Chem. 992, 164 (2012).

    Article  CAS  Google Scholar 

  24. E. Vessally and S. Soleimani-Amiri, Appl. Surf. Sci. 396, 740 (2017).

    Article  CAS  Google Scholar 

  25. J. Beheshtian, A. A. Peyghan, and Z. Bagheri, Appl. Surf. Sci. 258, 8980 (2012).

    Article  CAS  Google Scholar 

  26. J. Beheshtian, A. A. Peyghan, and M. B. Tabar, Appl. Surf. Sci. 266, 182 (2013).

    Article  CAS  Google Scholar 

  27. A. A. Peyghan, M. Noei, and M. B. Tabar, J. Mol. Model. 19, 3007 (2013).

    Article  CAS  PubMed  Google Scholar 

  28. W. Zhou, J. Zhou, J. Shen, and C. Ouyang, J. Phys. Chem. Solids 73, 245 (2012).

    Article  CAS  Google Scholar 

  29. M. Jeong, T. Ahn, H. Nara, and T. Momma, Nano Energy 28, 51 (2016).

    Article  CAS  Google Scholar 

  30. Q. Jiang, Z. Zhang, S. Yin, and Z. Guo, Appl. Surf. Sci. 379, 73 (2016).

    Article  CAS  Google Scholar 

  31. D. Shao, D. Tang, J. Yang, and Y. Li, J. Power Sources 297, 344 (2015).

    Article  CAS  Google Scholar 

  32. P. Subalakshmi and A. Sivashanmugam, J. Alloys Compd. 690, 523 (2017).

    Article  CAS  Google Scholar 

  33. B. Chen, S. Chu, R. Cai, S. Wei, and R. Hu, Comput. Mater. Sci. 123, 44 (2016).

    Article  CAS  Google Scholar 

  34. A. A. Peyghan and M. Noei, J. Mex. Chem. Soc. 58, 46 (2014).

    CAS  Google Scholar 

  35. A. Gurung and R. Naderi, Electrochim. Acta 211, 720 (2016).

    Article  CAS  Google Scholar 

  36. S. W. Lee and N. Yabuuchi, Nat. Nanotechnol. 5, 531 (2010).

    Article  CAS  PubMed  Google Scholar 

  37. M. Li, Y.-J. Liu, and J.-X. Zhao, Appl. Surf. Sci. 345, 337 (2015).

    Article  CAS  Google Scholar 

  38. L. Qie, W. M. Chen, and Z. H. Wang, Adv. Mater. 24, 2047 (2012).

    Article  CAS  PubMed  Google Scholar 

  39. Z.-S. Wu, W. Ren, L. Xu, and F. Li, ACS Nano 5, 5463 (2011).

    Article  CAS  PubMed  Google Scholar 

  40. Y. Liu, V. I. Artyukhov, and M. Liu, J. Phys. Chem. Lett. 4, 1737 (2013).

    Article  CAS  PubMed  Google Scholar 

  41. R. P. Hardikar, D. Das, and S. S. Han, Phys. Chem. Chem. Phys. 16, 16502 (2014).

    Article  CAS  PubMed  Google Scholar 

  42. A. A. Peyghan, M. Noei, and S. Yourdkhani, Superlatt. Microstruct. 59, 115 (2013).

    Article  CAS  Google Scholar 

  43. X. Ouyang, M. Lei, S. Shi, C. Luo, and D. Liu, J. Alloys Compd. 476, 462 (2009).

    Article  CAS  Google Scholar 

  44. J. Beheshtian, A. A. Peyghan, and Z. Bagheri, Struct. Chem. 24, 1565 (2013).

    Article  CAS  Google Scholar 

  45. S. Shi, P. Lu, Z. Liu, Y. Qi, and L. G. Hector, J. Am. Chem. Soc. 134, 15476 (2012).

    Article  CAS  PubMed  Google Scholar 

  46. A. A. Peyghan, A. Soltani, and A. A. Pahlevani, Appl. Surf. Sci. 270, 25 (2013).

    Article  CAS  Google Scholar 

  47. S. Shi, C. Ouyang, M. Lei, and W. Tang, J. Power Sources 171, 908 (2007).

    Article  CAS  Google Scholar 

  48. A. Ahmadi, J. Beheshtian, and M. Kamfiroozi, J. Mol. Model. 18, 1729 (2012).

    Article  CAS  PubMed  Google Scholar 

  49. S. Shi, J. Gao, Y. Liu, Y. Zhao, Q. Wu, and W. Ju, Chin. Phys. B 25, 18212 (2015).

    Article  CAS  Google Scholar 

  50. A. Soltani, A. Ahmadi Peyghan, and Z. Bagheri, Phys. E (Amsterdam, Neth.) 48, 176 (2013).

    Article  CAS  Google Scholar 

  51. L. Safari, E. Vessally, A. Bekhradnia, and L. Edjlali, Thin Solid Films 623, 157 (2017).

    Article  CAS  Google Scholar 

  52. A. A. Peyghan, M. T. Baei, and M. Moghimi, Comput. Theor. Chem. 997, 63 (2012).

    Article  CAS  Google Scholar 

  53. D. Golberg, Y. Bando, and Y. Huang, ACS Nano 4, 2979 (2010).

    Article  CAS  PubMed  Google Scholar 

  54. X. Chen, P. Wu, M. Rousseas, and D. Okawa, J. Am. Chem. Soc. 131, 890 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. J. Beheshtian, M. Kamfiroozi, and Z. Bagheri, Chin. J. Chem. Phys. 25, 60 (2012).

    Article  CAS  Google Scholar 

  56. Y. Zhao and D. G. Truhlar, Theor. Chem. Acc. 120, 215 (2008).

    Article  CAS  Google Scholar 

  57. J. Andzelm and C. Kolmel, J. Chem. Phys. 103, 9312 (1995).

    Article  CAS  Google Scholar 

  58. L. H. Gan and J. Q. Zhao, Phys. E (Amsterdam, Neth.) 41, 1249 (2009).

    Article  CAS  Google Scholar 

  59. S. F. Boys and F. Bernardi, Mol. Phys. 19, 553 (1970).

    Article  CAS  Google Scholar 

  60. L. Ma, J. M. Zhang, K. W. Xu, and V. Ji, Appl. Surf. Sci. 343, 121 (2015).

    Article  CAS  Google Scholar 

  61. J. Beheshtian and H. Soleymanabadi, J. Mol. Model. 18, 2343 (2012).

    Article  CAS  PubMed  Google Scholar 

  62. J. Beheshtian, Z. Bagheri, and M. Kamfiroozi, Struct. Chem. 23, 653 (2012).

    Article  CAS  Google Scholar 

  63. J. Beheshtian, A. A. Peyghan, and Z. Bagheri, Comput. Mater. Sci. 62, 71 (2012).

    Article  CAS  Google Scholar 

  64. R. R. Q. Freitas and G. K. Gueorguiev, Chem. Phys. Lett. 583, 119 (2013).

    Article  CAS  Google Scholar 

  65. M. T. Baei, A. A. Peyghan, and Z. Bagheri, Chin. Chem. Lett. 23, 965 (2012).

    Article  CAS  Google Scholar 

  66. M. Baei and H. Mohammadian, Bulg. Chem. Commun 46, 735 (2014).

    Google Scholar 

  67. J. Beheshtian, Z. Bagheri, and M. Kamfiroozi, J. 42, 1400 (2011).

    CAS  Google Scholar 

  68. J. Beheshtian, Z. Bagheri, and M. Kamfiroozi, J. Mol. Model. 18, 2653 (2012).

    Article  CAS  PubMed  Google Scholar 

  69. J. Hosseini, A. Rastgou, and R. Moradi, J. Mol. Liq. 225, 913 (2017).

    Article  CAS  Google Scholar 

  70. L. Saw, Y. Ye, and A. Tay, Appl. Therm. Eng. 73, 154 (2014).

    Article  CAS  Google Scholar 

  71. T. Koopmans, Phys. (Amsterdam, Neth.) 1, 104 (1934).

    Article  Google Scholar 

  72. P. Politzer and F. Abu-Awwad, Theor. Chem. Acc. 99, 83 (1998).

    Article  CAS  Google Scholar 

  73. H. Sebastien, J. Electron. Spectosc. Relat. Phenom. 123, 345 (2002).

    Article  Google Scholar 

  74. A. Szabo, and N. S. Ostlund, Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory (Dover, New York, 1990), Chap. 3.

    Google Scholar 

  75. J. Michl and V. Bonačič-Koutecky, in Electronic Aspects of Organic Photochemistry (Wiley, Chichester, 1990), p. 35.

    Google Scholar 

  76. W. J. Hehre, P. V. Schleyer, and J. A. Pople, Ab initio Molecular Orbital Theory (Wiley, New York, 1986), p. 24.

    Google Scholar 

  77. G. Zhang, and C. B. Musgrave, J. Phys. Chem. A 111, 1554 (2007).

    Article  CAS  PubMed  Google Scholar 

  78. M. D. Esrafili and N. Saeidi, Chem. Phys. Lett. 671, 49 (2017).

    Article  CAS  Google Scholar 

  79. M. D. Esrafili and R. Nurazar, Surf. Sci. 626, 44 (2014).

    Article  CAS  Google Scholar 

  80. M. D. Esrafili, N. Saeidi, Phys. E (Amsterdam, Neth.) 74, 382 (2015).

    Article  CAS  Google Scholar 

  81. M. D. Esrafili, P. Nematollahi, and H. Abdollahpour, Appl. Surf. Sci. 378, 418 (2016).

    Article  CAS  Google Scholar 

  82. M. D. Esrafili, P. Nematollahi, and R. Nurazar, Superlatt. Microstruct. 92, 60 (2016).

    Article  CAS  Google Scholar 

  83. M. D. Esrafili and R. Nurazar, Comput. Mat. Sci. 92, 172 (2014).

    Article  CAS  Google Scholar 

  84. L. Song, L. Ci, H. Lu, and P. B. Sorokin, Nano Lett. 10, 3209 (2010).

    Article  CAS  PubMed  Google Scholar 

  85. Z. Bagheri, Appl. Surf. Sci. 383, 294 (2016).

    Article  CAS  Google Scholar 

  86. K. Nejati, A. Hosseinian, A. Bekhradnia, E. Vessally, and L. Edjlali, J. Mol. Graph. Mod. 74, 1 (2017).

    Article  CAS  Google Scholar 

  87. A. Hosseinian, S. Soleimani, S. Arshadi, E. Vessally, and L. Edjlali, Phys. Lett. A 381, 2010 (2017).

    Article  CAS  Google Scholar 

  88. M. T. Baei, A. A. Peyghan, and Z. Bagheri, Chin. Chem. Lett. 23, 965 (2012).

    Article  CAS  Google Scholar 

  89. J. Hosseini, A. Rastgou, and R. Moradi, J. Mol. Liq. 225, 913 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zehui Shao or Meysam Najafi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Shao, Z., Siddiqui, M.K. et al. Potential of Carbon, Silicon, Boron Nitride and Aluminum Phosphide Nanocages as Anodes of Lithium, Sodium and Potassium Ion Batteries: A DFT Study. Russ. J. Phys. Chem. B 13, 156–164 (2019). https://doi.org/10.1134/S1990793119010184

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793119010184

Keywords

Navigation