Skip to main content
Log in

Direct Numerical Simulation of Turbulent Combustion of Hydrogen—Air Mixtures of Various Compositions in a Two-Dimensional Approximation

  • Combustion, Explosion, and Shock Waves
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A technique of two-dimensional direct numerical simulation of turbulent flame propagation in reacting gas mixtures under stationary homogeneous isotropic turbulence conditions is proposed. This technique is based on a detailed kinetic mechanism of combustion of a multicomponent mixture and uses no fitting parameters. It is applied to the calculation of turbulent combustion of a hydrogen-air mixture. A condition is proposed to compare the results of two-dimensional calculations (dependences of flame propagation velocity on turbulence intensity) with the data of actual three-dimensional experiments. The obtained agreement between the calculated and measured dependences confirmed the validity of the proposed condition. The effects of pressure on the flame propagation velocity were considered. The calculated concentrations of the active reaction centers-hydroxyl (OH) and H and O atoms-in turbulent flame are lower than those in laminar flame, which also agrees with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Damkoler, Z. Elektrochem. 46, 601 (1940).

    Google Scholar 

  2. K. I. Shchelkin, Zh. Tekh. Fiz. 13, 520 (1943).

    Google Scholar 

  3. B. Lewis and G. Elbe, Combustion, Flames and Explosions of Gases (Academic, Orlando, 1987).

    Google Scholar 

  4. A. S. Sokolik, Self-Ignition, Flame and Detonation in Gases (Akad. Nauk SSSR, Moscow, 1960) [in Russian].

    Google Scholar 

  5. E. S. Shchetinkov, Gas Combustion Physics (Nauka, Moscow, 1965) [in Russian].

    Google Scholar 

  6. J. A. Bernard and J. N. Bradley, Flame and Combustion (Chapman Hall, London, New York, 1985).

    Google Scholar 

  7. T. Echekki and J. H. Chen, Combust. Flame 134, 169 (2003).

    Article  CAS  Google Scholar 

  8. J. B. Bell, M. S. Day, and J. F. Grcar, Proc. Combust. Inst. 29, 1987 (2002).

    Article  CAS  Google Scholar 

  9. J. B. Bell, R. K. Cheng, M. S. Day, and I. G. Shepherd, Proc. Combust. Inst. 31, 1309 (2006).

    Article  CAS  Google Scholar 

  10. A. J. Aspden, M. S. Day, and J. B. Bell, Combust. Flame 166, 266 (2016).

    Article  CAS  Google Scholar 

  11. V. Ya. Basevich, V. P. Volodin, S. M. Kogarko, and N. I. Peregudov, Khim. Fiz. 1, 1130 (1982).

    Google Scholar 

  12. V. Ya. Basevich, A. A. Belyaev, S. M. Frolov, and B. Basara, Gorenie Vzryv 10, 4 (2017).

    Google Scholar 

  13. F. A. Williams, Combustion Theory (Addison-Wesley, Reading, Mass., 1965; Nauka, Moscow, 1971).

    Google Scholar 

  14. S. K. Godunov and V. S. Ryaben’kii, Difference Schemes (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  15. V. Ya. Basevich, A. A. Belyaev, V. S. Posvyanskii, and S. M. Frolov, Russ. J. Phys. Chem. B 7, 161 (2013).

    Article  CAS  Google Scholar 

  16. A. Burcat, Thermodynamic Data at the Web Site of the Laboratory for Chemical Kinetics. Ideal Gas Thermo-dynamic Data in Polynomial Form for Combustion and Air Pollution Use. http://garfield.chem.elte.hu/Burcat/burcat.html.

  17. R. C. Reid, J. M. Prausnitz, and T. K. Sherwood, The Properties of Gases and Liquids (McGraw-Hill, New York, 1977).

    Google Scholar 

  18. V. P. Karpov and E. S. Severin, Fiz. Goreniya Vzryva 16, 45 (1980).

    CAS  Google Scholar 

  19. L. S. Kozachenko, Doctoral (Phys. Math.) Dissertation (Inst. Chem. Phys. Acad, Sci. USSR, Moscow, 1954).

    Google Scholar 

  20. J. Manton and B. B. Milliken, in Proceedings of the Gas Dynamics Symposium on Aerothermochemistry, Northwestern Univ., 1956, p. 151.

    Google Scholar 

  21. G. E. Andrews and D. Bradley, Combust. Flame 20, 77 (1973).

    Article  CAS  Google Scholar 

  22. T. Iijima and T. Takeno, Combust. Flame 65, 35 (1986).

    Article  CAS  Google Scholar 

  23. D. R. Dowdy, D. B. Smith, S. C. Taylor, and A. Williams, Proc. Combust. Inst. 23, 325 (1990).

    Article  Google Scholar 

  24. A. A. Belyaev and V. S. Posvyanskii, Algoritmy Program. Inform. Byull. Gos. Fonda Algoritmov Programm SSSR, No. 3, 35 (1985).

  25. V. Ya. Basevich and S. M. Kogarko, Fiz. Goreniya Vzryva 21 (5), 12 (1985).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Frolov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Basevich, V.Y., Belyaev, A.A., Frolov, S.M. et al. Direct Numerical Simulation of Turbulent Combustion of Hydrogen—Air Mixtures of Various Compositions in a Two-Dimensional Approximation. Russ. J. Phys. Chem. B 13, 75–85 (2019). https://doi.org/10.1134/S1990793119010044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793119010044

Keywords

Navigation