Skip to main content
Log in

The Properties of Strings Formed in the Homochiral Solutions of Trifluoroacetylated Amino Alcohols in Cyclohexane

  • Structure of Chemical Compounds. Spectroscopy
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The strings formed in the solutions of trifluoroacetylated amino alcohols in cyclohexane were studied. It was found that microscopic strings with the diameter d ∼ 1 μm were woven from tightly coupled rigid submicroscopic strings with the diameter d ∼ 0.1 μm in increments of >100 μm. Therefore, the compound strings are transparent, and they usually look like an unstructured cylinder. Microscopic strings can be tightly combined in strings to 60 μm in diameter. Submicroscopic strings are arranged almost parallel to the axis of a microscopic string. The microscopic string acts as a polarizer: it transmits light polarized across its axis and absorbs light polarized along the axis. The majority of these properties can be explained based on the assumption that a connection between the strings of all hierarchical levels in cyclohexane is stronger than that in solvents with different string morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Lu and R. G. Weiss, Langmuir 11, 3630 (1995).

    Article  CAS  Google Scholar 

  2. K. Inoue, Y. Ono, Y. Kanekiyo, et al., Org. Chem. 64, 2933 (1999).

    Article  CAS  Google Scholar 

  3. S. Laan, B. L. Feringa, R. M. Kellogg, and J. Esch, Langmuir 18, 7136 (2002).

    Article  Google Scholar 

  4. S. Vauthey, S. Santoso, H. Gong, et al., Proc. Natl. Acad. Sci. 99, 5355 (2002).

    Article  CAS  Google Scholar 

  5. C. Li, N. J. Buurma, I. Haq, et al., Langmuir 21, 11026 (2005).

    Article  CAS  Google Scholar 

  6. C. Zhan, P. Gao, and M. Liu, Chem. Commun., 462 (2005).

  7. M. George, G. P. Funkhouser, P. Terech, and R. G. Wise, Langmuir 22, 7885 (2006).

    Article  CAS  Google Scholar 

  8. S. J. Langford, M. J. Latter, V. L. Lau, et al., Org. Lett. 8, 1371 (2006).

    Article  CAS  Google Scholar 

  9. G. Godeau and D. Barthelemy, Langmuir 25, 8447 (2009).

    Article  CAS  Google Scholar 

  10. C. C. Lee, C. Grenier, E. W. Meijer, and A. P. H. J. Schenning, Chem. Soc. Rev. 38, 671 (2009).

    Article  CAS  Google Scholar 

  11. J. Madsen, S. P. Armes, K. Bertal, et al., Biomacromolecules 10, 1875 (2009).

    Article  CAS  Google Scholar 

  12. B. G. Bag, G. C. Maity, and S. R. Pramanik, Supramol. Chem. 17, 383 (2010).

    Article  Google Scholar 

  13. A. A. Bredikhin, Z. A. Bredikhina, and A. V. Pashagin, Mendeleev Commun. 21, 144 (2011).

    Article  CAS  Google Scholar 

  14. R. G. Weiss and P. Terech, Molecular Gels (Springer, Dordecht, 2006).

    Book  Google Scholar 

  15. R. G. Kostyanovsky, D. F. Lenev, O. N. Krutius, and A. A. Stankevich, Mendeleev Commun. 15, 140 (2005).

    Article  Google Scholar 

  16. S. V. Stovbun and A. A. Skoblin, Mosc. Univ. Phys. Bull. 67, 317 (2012).

    Article  Google Scholar 

  17. P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell Univ., Ithaca, London, 1979).

    Google Scholar 

  18. D. Stauffer, Introduction to Percolation Theory (Taylor and Francis, London, 1985).

    Book  Google Scholar 

  19. M. Kleman and O. D. Lavrentovich, Soft Matter Physics (Springer, New York, 2003).

    Google Scholar 

  20. S. V. Stovbun, Doctoral (Phys. Math.) Dissertation (Inst. Chem. Phys. RAS, Moscow, 2012).

    Google Scholar 

  21. O. Lebel, M. E. Perron, T. Maris, et al., Chem. Mater. 18, 3616 (2006).

    Article  CAS  Google Scholar 

  22. G. John, B. V. Shankar, S. R. Jadhav, and P. K. Vemula, Langmuir 26, 17843 (2010).

    Article  CAS  Google Scholar 

  23. M. George and R. G. Weiss, Acc. Chem. Res. 39, 489 (2006).

    Article  CAS  Google Scholar 

  24. S. Prasanthkumar, A. Saeki, S. Seki, and A. Ajayaghosh, J. Am. Chem. Soc. 132, 8866 (2010).

    Article  CAS  Google Scholar 

  25. J. Peng, K. Liu, J. Liu, et al., Langmuir 24, 2992 (2008).

    Article  CAS  Google Scholar 

  26. M. George and R. G. Weiss, Langmuir 19, 8168 (2003).

    Article  CAS  Google Scholar 

  27. X. Huang, P. Terech, S. R. Raghavan, and R. G. Weiss, J. Am. Chem. Soc. 127, 4336 (2005).

    Article  CAS  Google Scholar 

  28. S. V. Stovbun, Russ. J. Phys. Chem. B 5, 546 (2011).

    Article  CAS  Google Scholar 

  29. S. V. Stovbun, O. N. Krutius, A. M. Zanin, D. S. Skorobogat’ko, and R. G. Kostyanovskii, Russ. J. Phys. Chem. B 5, 846 (2011).

    Article  CAS  Google Scholar 

  30. S. V. Stovbun, A. M. Zanin, A. A. Skoblin, A. I. Mikhailov, and A. A. Berlin, Dokl. Phys. Chem. 442, 36 (2012).

    Article  CAS  Google Scholar 

  31. S. V. Stovbun and A. A. Skoblin, Mosc. Univ. Phys. Bull. 67, 274 (2012).

    Article  Google Scholar 

  32. S. V. Stovbun, A. M. Zanin, A. A. Skoblin, F. V. Bulygin, V. S. Fedorenko, V. L. Lyaskovskii, and I. A. Bilenko, Izmerit. Tekh., No. 6, 70 (2012).

    Google Scholar 

  33. S. V. Stovbun and A. A. Skoblin, Khim. Fiz. 31 (9), 24 (2012).

    CAS  Google Scholar 

  34. S. V. Stovbun, A. M. Zanin, A. A. Skoblin, V. O. Kompanets, V. B. Laptev, E. A. Ryabov, and S. V. Chekalin, Khim. Fiz. 31 (11), 17 (2012).

    CAS  Google Scholar 

  35. S. V. Stovbun, A. A. Skoblin, and A. I. Mikhailov, Khim. Fiz. 32 (2), 30 (2013).

    CAS  Google Scholar 

  36. S. V. Stovbun, A. A. Skoblin, A. M. Zanin, A. I. Mikhailov, F. V. Bulygin, V. S. Fedorenko, and V. L. Lyaskovskii, Khim. Fiz. 32 (3), 12 (2013).

    CAS  Google Scholar 

  37. S. V. Stovbun, A. A. Skoblin, A. M. Zanin, Ya. A. Litvin, V. A. Tverdislov, A. A. Kirsankin, M. V. Grishin, and B. R. Shub, Russ. J. Phys. Chem. B 8, 620 (2014).

    Article  CAS  Google Scholar 

  38. S. V. Stovbun, A. A. Skoblin, F. V. Bulygin, V. L. Minaev, V. O. Kompanets, V. B. Laptev, E. A. Ryabov, S. V. Chekalin, and S. E. Permyakov, Russ. J. Phys. Chem. B 9, 193 (2015).

    Article  CAS  Google Scholar 

  39. S. V. Stovbun, A. A. Skoblin, A. I. Mikhailov, M.V.Grishin, B. R. Shub, A. M. Zanin, and D. P. Shashkin, Ross. Nanotekhnol. 7 (7–8), 107 (2012).

    Google Scholar 

  40. S. V. Stovbun, A. M. Zanin, A. A. Skoblin, D. P. Shashkin, A. I. Mikhailov, M. V. Grishin, and B. R. Shub, Russ. J. Phys. Chem. B 7, 1 (2013).

    Article  CAS  Google Scholar 

  41. S. V. Stovbun, A. A. Skoblin, and A. A. Berlin, Dokl. Phys. Chem. 450, 111 (2013).

    Article  CAS  Google Scholar 

  42. Ya. A. Litvin, A. A. Skoblin, and S. V. Stovbun, Russ. J. Phys. Chem. B 11, 146 (2017).

    Article  CAS  Google Scholar 

  43. A. Gansäuer, I. Winkler, T. Klawonn, et al., Organometallics 28, 1377 (2008).

    Article  Google Scholar 

  44. S. V. Stovbun, A. M. Zanin, A. A. Skoblin, A. I. Mikhailov, R. G. Kostyanovskii, M. V. Grishin, and B. R. Shub, Russ. J. Phys. Chem. B 5, 1019 (2011).

    Article  CAS  Google Scholar 

  45. S. V. Stovbun, A. A. Skoblin, A. M. Zanin, M. V. Grishin, B. R. Shub, Yu. M. Rybin, I. M. Ageev, G. G. Shishkin, and V. A. Tverdislov, Byull. Eksp. Biol. Med. 154 (7), 41 (2012).

    Google Scholar 

  46. S. V. Stovbun, A. A. Skoblin, and V. A. Tverdislov, Biophysics 59, 876 (2014).

    Article  CAS  Google Scholar 

  47. S. V. Stovbun, A. M. Zanin, A. A. Skoblin, M. G. Mikhaleva, D. V. Zlenko, and V. A. Tverdislov, Mosc. Univ. Phys. Bull. 70, 51 (2015).

    Article  Google Scholar 

  48. S. V. Stovbun and A. A. Skoblin, Mosc. Univ. Phys. Bull. 67, 278 (2012).

    Article  Google Scholar 

  49. S. V. Stovbun, A. M. Zanin, D. S. Skorobogat’ko, A. A. Skoblin, Ya. A. Litvin, A. I. Mikhailov, O. N. Krutius, and R. G. Kostyanovskii, Russ. J. Phys. Chem. B 6, 341 (2012).

    Article  CAS  Google Scholar 

  50. S. V. Stovbun and A. A. Skoblin, Khim. Fiz. 31 (7), 7 (2012).

    CAS  Google Scholar 

  51. S. V. Stovbun, A. A. Skoblin, F. V. Bulygin, V. L. Minaev, V. O. Kompanets, V. B. Laptev, E. A. Ryabov, S. V. Chekalin, and S. E. Permyakov, Russ. J. Phys. Chem. B 9, 193 (2015).

    Article  CAS  Google Scholar 

  52. I. I. Artobolevskii, Theory of Mechanisms and Machines, The Handbook for Higher Schools, 4th ed. (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  53. S. V. Stovbun, A. A. Skoblin, Ya. A. Litvin, A. A. Kirsankin, M. V. Grishin, B. R. Shub, Ya. V. Zubavichus, A. A. Veligzhanin, L. D. Popov, E. A. Raspopova, and Yu. N. Tkachenko, Russ. J. Phys. Chem. B 8, 801 (2014).

    Article  CAS  Google Scholar 

  54. S. V. Stovbun, A. A. Skoblin, Ya. A. Litvin, M. G. Mikhaleva, and V. A. Tverdislov, Mosc. Univ. Phys. Bull. 70, 45 (2015).

    Article  Google Scholar 

  55. A. A. Skoblin and S. V. Stovbun, Byull. Eksp. Biol. Med. 159, 607 (2015).

    Article  CAS  Google Scholar 

  56. A. R. Hirst, I. A. Coates, T. R. Boucheteau, et al., J. Am. Chem. Soc. 130, 9113 (2008).

    Article  CAS  Google Scholar 

  57. P. Terech and R. G. Weiss, Chem. Rev. 97, 3133 (1997).

    Article  CAS  Google Scholar 

  58. M. Côte, T. Nicholls, D. W. Knight, I. R. Morgan, P. G. Rogueda, S. M. King, R. K. Heenan, and P. C. Griffiths, Langmuir 25, 8678 (2009).

    Article  Google Scholar 

  59. M. George and R. G. Weiss, Langmuir 19, 1017 (2003).

    Article  CAS  Google Scholar 

  60. Ya. A. Litvin, A. N. Shchegolikhin, A. A. Skoblin, and S. V. Stovbun, Russ. J. Phys. Chem. B 10, 725 (2016).

    Article  CAS  Google Scholar 

  61. S. V. Stovbun, A. A. Skoblin, A. M. Zanin, D. P. Shashkin, V. A. Tverdislov, and A. A. Berlin, Dokl. Phys. Chem. 450, 138 (2013).

    Article  CAS  Google Scholar 

  62. D. V. Zlenko and S. V. Stovbun, Russ. J. Phys. Chem. B 8, 613 (2014).

    Article  CAS  Google Scholar 

  63. S. V. Stovbun, A. A. Skoblin, and A. M. Zanin, Russ. J. Phys. Chem. B 8, 293 (2014).

    Article  CAS  Google Scholar 

  64. A. A. Skoblin, A. M. Zanin, and S. V. Stovbun, Russ. J. Phys. Chem. B 8, 302 (2014).

    Article  CAS  Google Scholar 

  65. A. A. Skoblin, Ya. A. Litvin, A. M. Zanin, V. O. Kompanets, V. B. Laptev, E. A. Ryabov, S. V. Chekalin, and S. V. Stovbun, Vestn. MGOU, Ser.: Estestv. Nauki, No. 1, 108 (2014).

    Google Scholar 

  66. S. V. Stovbun, A. A. Skoblin, and V. A. Tverdislov, Byull. Eksp. Biol. Med., No. 12, 643 (2011).

    Google Scholar 

  67. J. Israelachvili, Intermolecular and Surface Forces (Nauchnyi Mir, Moscow, 2011; Academic, New York, 2011).

    Google Scholar 

  68. D. V. Zlenko and S. V. Stovbun, Komp’yut. Issled. Model. 5, 813 (2013).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. G. Mikhaleva.

Additional information

Original Russian Text © M.A. Tregubova, M.G. Mikhaleva, A.A. Kirsankin, S.N. Nikolskii, 2018, published in Khimicheskaya Fizika, 2018, Vol. 37, No. 2, pp. 3–10.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tregubova, M.A., Mikhaleva, M.G., Kirsankin, A.A. et al. The Properties of Strings Formed in the Homochiral Solutions of Trifluoroacetylated Amino Alcohols in Cyclohexane. Russ. J. Phys. Chem. B 12, 28–35 (2018). https://doi.org/10.1134/S1990793118010268

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118010268

Keywords

Navigation