Russian Journal of Physical Chemistry B

, Volume 12, Issue 1, pp 83–90 | Cite as

Numerical Simulation of Laser Radiation Interaction with PETN in the Hydrodynamic Approximation

Combustion, Explosion, and Shock Waves
  • 3 Downloads

Abstract

The laser initiation of PETN is studied using the hydrodynamic approximation. The calculated and measured values of the threshold energy fluence for the laser initiation of PETN are compared.

Keywords

laser initiation PETN hydrodynamics detonation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Khaneft and V. A. Dolgachev, Combust. Explos. Shock Waves 50, 105 (2014).CrossRefGoogle Scholar
  2. 2.
    E. V. Duginov and A. V. Khaneft, Polzunov. Al’manakh, Nos. 1–2, 52 (2007).Google Scholar
  3. 3.
    V. A. Dolgachev, E. V. Duginov, and A. V. Khaneft, Polzunov. Vestn., No. 4–1, 195 (2011).Google Scholar
  4. 4.
    V. P. Tsiplev, E. Yu. Morozova, and A. S. Skripin, Izv. Tomsk. Politekh. Univ. 317, 149 (2010).Google Scholar
  5. 5.
    L. Strakovkiy, A. Cohen, R. Fifer, and B. Forch, ARLTR-1699 (Army Res. Labor., Aberdeen Proving Ground, MD, 1998).Google Scholar
  6. 6.
    L. G. Strakovskii, Fiz. Goreniya Vzryva 1 (1), 41 (1985).Google Scholar
  7. 7.
    D. Damm and M. Maiorov, Proc. SPIE 7795 (2010). doi 10.1117/12.861033Google Scholar
  8. 8.
    A. V. Chernai, Fiz. Goreniya Vzryva 32, 11 (1996).Google Scholar
  9. 9.
    E. V. Duginov and A. V. Khaneft, Polzunov. Vestn., No. 3, 67 (2009).Google Scholar
  10. 10.
    V. I. Tarzhanov, V. F. Kuropatenko, A. T. Sapozhnikov, et al., in Proceedings of the Conference on Detonation, Critical Phenomena, Physicochemical Transformations in Shock Waves (OIKhF AN SSSR, Chernogolovka, 1978).Google Scholar
  11. 11.
    S. E. Kuratov, A. A. Serezhkin, and A. A. Chesnokov, http://chemphys.edu.ru/issues/2015-16-1/articles/316/.Google Scholar
  12. 12.
    V. I. Tarzhanov, A. D. Zinchenko, V. I. Sdobnov, et al., Fiz. Goreniya Vzryva, No. 4, 113 (1996).Google Scholar
  13. 13.
    V. Meredith, L. Gross, and W. Beckstead, Combust. Flame 162, 507 (2015).CrossRefGoogle Scholar
  14. 14.
    A. A. Volkova, A. D. Zinchenko, and I. V. Sanin, Fiz. Goreniya Vzryva, No. 5, 760 (1977).Google Scholar
  15. 15.
    G. I. Kanel’, S. V. Razorenov, A. V. Utkin, et al., Shock-Wave Phenomena in Condensed Media (YaKUS-K, Moscow, 1996) [in Russian].Google Scholar
  16. 16.
    Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Fizmatlit, Moscow, 2008; Academic, New York, 1966, 1967).Google Scholar
  17. 17.
    A. K. Kapila, R. Menikoff, J. B. Bdzil, et al., Phys. Fluids 13, 3002 (2001).CrossRefGoogle Scholar
  18. 18.
    S. Xu and D. S. Stewart, J. Eng. Math., No. 31, 143 (1997).CrossRefGoogle Scholar
  19. 19.
    A. K. Kapila, D. W. Schwendeman, J. B. Bdzil, et al., Combust. Theory Model. 2, 781 (2007).CrossRefGoogle Scholar
  20. 20.
    E. L. Lee and C. M. Tarver, Phys. Fluids 23, 2362 (1980).CrossRefGoogle Scholar
  21. 21.
    Yu. P. Khomenko, A. N. Ishchenko, and V. Z. Kasimov, Mathematical Modeling of Intraballistic Processes in the Barrel Systems (Sib. Otdel. RAN, Novosibirsk, 1999) [in Russian].Google Scholar
  22. 22.
    J. A. Saenz and D. S. Stewart, J. Appl. Phys., No. 104, 043519 (2008).CrossRefGoogle Scholar
  23. 23.
    Ch. L. Mader, Numerical Modeling of Detonations (Univ. California Press, Berkeley, 1979).Google Scholar
  24. 24.
    A. V. Babkin, V. I. Kolpakov, V. N. Okhotin, et al., Numerical Methods in the Problems of Physics of Fast Processes. Applied Mechanics of Continuous Media (Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Moscow, 2006), Vol. 3 [in Russian].Google Scholar
  25. 25.
    A. Amsden, H. M. Ruppel, and W. Hirt, Report LA-8095, UC-32 (Los Alamos Sci. Labor., 1980).Google Scholar
  26. 26.
    V. N. Kukudzhanov and N. G. Bourago, Mech. Solids 40, 35 (2005).Google Scholar
  27. 27.
    A. A. Samarskii and Yu. P. Popov, Application of Difference Methods to Problems of Gas Dynamics (Nauka, Moscow, 1992) [in Russian].Google Scholar
  28. 28.
    C. A. Forest, Report LA-8790 (Los Alamos Sci. Labor., 1981).Google Scholar
  29. 29.
    D. Stirpe, J. O. Johnson, and J. Wackerle, J. Appl. Phys. 41, 3884 (1970).CrossRefGoogle Scholar
  30. 30.
    EGIDA-2D Code for Two-Dimensional Problem Simulation, The School-Book, Ed. by Yu.V. Yanilkin (RFYaTs-VNIIEF, Sarov, 2008), Vol. 1 [in Russian].Google Scholar
  31. 31.
    S. Kubota, T. Saburi, Y. Ogata, et al., AIP Conf. Proc. 1426, 231 (2012).CrossRefGoogle Scholar
  32. 32.
    N. I. Koroteev and I. L. Shumai, Physics of High-Power Laser Emission (Nauka, Moscow, 1991) [in Russian].Google Scholar
  33. 33.
    www.paraview.org.Google Scholar
  34. 34.
    A. F. Belyaev, Combustion-to-Explosion Transition in Condensed System (Nauka, Moscow, 1973) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Dukhov Research Institute of AutomaticsMoscowRussia

Personalised recommendations