Skip to main content
Log in

Numerical Simulation of Laser Radiation Interaction with PETN in the Hydrodynamic Approximation

  • Combustion, Explosion, and Shock Waves
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The laser initiation of PETN is studied using the hydrodynamic approximation. The calculated and measured values of the threshold energy fluence for the laser initiation of PETN are compared.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. V. Khaneft and V. A. Dolgachev, Combust. Explos. Shock Waves 50, 105 (2014).

    Article  Google Scholar 

  2. E. V. Duginov and A. V. Khaneft, Polzunov. Al’manakh, Nos. 1–2, 52 (2007).

    Google Scholar 

  3. V. A. Dolgachev, E. V. Duginov, and A. V. Khaneft, Polzunov. Vestn., No. 4–1, 195 (2011).

    Google Scholar 

  4. V. P. Tsiplev, E. Yu. Morozova, and A. S. Skripin, Izv. Tomsk. Politekh. Univ. 317, 149 (2010).

    Google Scholar 

  5. L. Strakovkiy, A. Cohen, R. Fifer, and B. Forch, ARLTR-1699 (Army Res. Labor., Aberdeen Proving Ground, MD, 1998).

    Google Scholar 

  6. L. G. Strakovskii, Fiz. Goreniya Vzryva 1 (1), 41 (1985).

    Google Scholar 

  7. D. Damm and M. Maiorov, Proc. SPIE 7795 (2010). doi 10.1117/12.861033

  8. A. V. Chernai, Fiz. Goreniya Vzryva 32, 11 (1996).

    CAS  Google Scholar 

  9. E. V. Duginov and A. V. Khaneft, Polzunov. Vestn., No. 3, 67 (2009).

    Google Scholar 

  10. V. I. Tarzhanov, V. F. Kuropatenko, A. T. Sapozhnikov, et al., in Proceedings of the Conference on Detonation, Critical Phenomena, Physicochemical Transformations in Shock Waves (OIKhF AN SSSR, Chernogolovka, 1978).

    Google Scholar 

  11. S. E. Kuratov, A. A. Serezhkin, and A. A. Chesnokov, http://chemphys.edu.ru/issues/2015-16-1/articles/316/.

  12. V. I. Tarzhanov, A. D. Zinchenko, V. I. Sdobnov, et al., Fiz. Goreniya Vzryva, No. 4, 113 (1996).

    Google Scholar 

  13. V. Meredith, L. Gross, and W. Beckstead, Combust. Flame 162, 507 (2015).

    Article  Google Scholar 

  14. A. A. Volkova, A. D. Zinchenko, and I. V. Sanin, Fiz. Goreniya Vzryva, No. 5, 760 (1977).

    Google Scholar 

  15. G. I. Kanel’, S. V. Razorenov, A. V. Utkin, et al., Shock-Wave Phenomena in Condensed Media (YaKUS-K, Moscow, 1996) [in Russian].

    Google Scholar 

  16. Ya. B. Zel’dovich and Yu. P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Fizmatlit, Moscow, 2008; Academic, New York, 1966, 1967).

    Google Scholar 

  17. A. K. Kapila, R. Menikoff, J. B. Bdzil, et al., Phys. Fluids 13, 3002 (2001).

    Article  CAS  Google Scholar 

  18. S. Xu and D. S. Stewart, J. Eng. Math., No. 31, 143 (1997).

    Article  Google Scholar 

  19. A. K. Kapila, D. W. Schwendeman, J. B. Bdzil, et al., Combust. Theory Model. 2, 781 (2007).

    Article  Google Scholar 

  20. E. L. Lee and C. M. Tarver, Phys. Fluids 23, 2362 (1980).

    Article  CAS  Google Scholar 

  21. Yu. P. Khomenko, A. N. Ishchenko, and V. Z. Kasimov, Mathematical Modeling of Intraballistic Processes in the Barrel Systems (Sib. Otdel. RAN, Novosibirsk, 1999) [in Russian].

    Google Scholar 

  22. J. A. Saenz and D. S. Stewart, J. Appl. Phys., No. 104, 043519 (2008).

    Article  Google Scholar 

  23. Ch. L. Mader, Numerical Modeling of Detonations (Univ. California Press, Berkeley, 1979).

    Google Scholar 

  24. A. V. Babkin, V. I. Kolpakov, V. N. Okhotin, et al., Numerical Methods in the Problems of Physics of Fast Processes. Applied Mechanics of Continuous Media (Mosk. Gos. Tekh. Univ. im. N. E. Baumana, Moscow, 2006), Vol. 3 [in Russian].

  25. A. Amsden, H. M. Ruppel, and W. Hirt, Report LA-8095, UC-32 (Los Alamos Sci. Labor., 1980).

    Google Scholar 

  26. V. N. Kukudzhanov and N. G. Bourago, Mech. Solids 40, 35 (2005).

    Google Scholar 

  27. A. A. Samarskii and Yu. P. Popov, Application of Difference Methods to Problems of Gas Dynamics (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  28. C. A. Forest, Report LA-8790 (Los Alamos Sci. Labor., 1981).

    Google Scholar 

  29. D. Stirpe, J. O. Johnson, and J. Wackerle, J. Appl. Phys. 41, 3884 (1970).

    Article  CAS  Google Scholar 

  30. EGIDA-2D Code for Two-Dimensional Problem Simulation, The School-Book, Ed. by Yu.V. Yanilkin (RFYaTs-VNIIEF, Sarov, 2008), Vol. 1 [in Russian].

  31. S. Kubota, T. Saburi, Y. Ogata, et al., AIP Conf. Proc. 1426, 231 (2012).

    Article  CAS  Google Scholar 

  32. N. I. Koroteev and I. L. Shumai, Physics of High-Power Laser Emission (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  33. www.paraview.org.

  34. A. F. Belyaev, Combustion-to-Explosion Transition in Condensed System (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Chesnokov.

Additional information

Original Russian Text © A.A. Chesnokov, S.E. Kuratov, 2018, published in Khimicheskaya Fizika, 2018, Vol. 37, No. 1, pp. 49–57.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chesnokov, A.A., Kuratov, S.E. Numerical Simulation of Laser Radiation Interaction with PETN in the Hydrodynamic Approximation. Russ. J. Phys. Chem. B 12, 83–90 (2018). https://doi.org/10.1134/S1990793118010050

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793118010050

Keywords

Navigation