Russian Journal of Physical Chemistry B

, Volume 11, Issue 5, pp 729–776 | Cite as

Modern technologies for detection and identification of explosive agents and devices

  • Sh. Sh. Nabiev
  • L. A. Palkina
External Effects on Physicochemical Transformations


The physical principles and most effective modern technologies for detecting and identifying explosive agents and devices and the analytical potential of these technologies were considered to solve the problems of antiterrorist security and countermeasures against terrorist attacks using explosive devices based on explosive agents. Particular attention was paid to the possibility of detecting explosive agents and devices, in particular, during automated control at the entrance to airports, railway stations, and various institutions and organizations and security check of suspicious persons, luggage inspection, etc. An analysis of the possibilities for identifying explosive agents and devices can evidently create conditions for expanding the existing technologies or combining them with new technologies for detecting not only various types of explosives, but also narcotic drugs, firearms, cold weapons, radioactive substances, poisonous substances, highly toxic substances, biological agents, etc.


terrorist attack explosive agents explosive devices giveaway factors detection technologies X-ray neutron and photonuclear analyses nuclear quadrupole resonance mass spectrometry chromatography chemiluminescence ion mobility spectrometry microwave terahertz and laser spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    International Terrorism: Challenge and Response, Ed. by B. Netanyahu (Transaction Publ., Piscataway, NJ, 1982).Google Scholar
  2. 2.
    J. M. Hanhimaki and B. Blumenau, An International History of Terrorism: Western and Non-Western Experiences (Routledge, London, 2013).Google Scholar
  3. 3.
    J. M. Lutz and B. J. Lutz, Global Terrorism (Routledge, London, 2013).Google Scholar
  4. 4.
    R. M. Medina and G. F. Hepner, The Geography of International Terrorism: An Introduction to Spaces and Places of Violent Non-State Groups (CRC, Boca Raton, FL, 2013).CrossRefGoogle Scholar
  5. 5.
    C. C. Combs and M. W. Slann, Encyclopedia of Terrorism (Facts on File Library of World History), 2nd ed. (Facts on File, New York, 2007).Google Scholar
  6. 6.
    Sh. Sh. Nabiev and L. A. Palkina, in The Atmosphere and Ionosphere: Elementary Processes, Monitoring, and Ball Lightning, Physics of Earth and Space Environments, Ed. by V. L. Bychkov, G. V. Golubkov, and A. I. Nikitin (Springer, Berlin, 2014), p. 113.Google Scholar
  7. 7.
    Toxico-Terrorism: Emergency Response and Clinical Approach to Chemical, Biological, and Radiological Agents, Ed. by R. McFee and J. Leikin (McGraw-Hill Education, New York, 2007).Google Scholar
  8. 8.
    V. Marshall, Major Chemical Hazards (Ellis Horwood, Chichester, 1987).Google Scholar
  9. 9.
    L. Nulhakiem, Potential Hazards in Chemical Industries. Scholar
  10. 10.
    N. P. Cheremisinoff and T. A. Davletshina, Fire and Explosion Hazards Handbook of Industrial Chemicals (Elsevier, New York, 1998).Google Scholar
  11. 11.
    V. A. Kiryushin, T. V. Motalova, S. V. Safonkin, and G. V. Shmidt, Toxicology of Chemical Hazards and Measures in the Centers of Chemical Defeat (RGMU, Rjazan’, 2004) [in Russian].Google Scholar
  12. 12.
    V. S. Isaev, Chemically Dangerous Substances. Methods of Forecasting and Estimation of Chemical Situation (Voennye znaniya, Moscow, 2007) [in Russian].Google Scholar
  13. 13.
    R. Kazi, Nuclear Terrorism. The New Terror of the 21st Century (Inst. Defense Studies Anal. Press, New Delhi, 2013).Google Scholar
  14. 14.
    Nuclear Terrorism: Countering the Threat, Ed. by B. Volders and T. Sauer (Routledge, London, 2016).Google Scholar
  15. 15.
    S. L. Hoenig, Handbook of Chemical Warfare and Terrorism (Greenwood, Westport, 2002).Google Scholar
  16. 16.
    Advances in Biological and Chemical Terrorism Countermeasures, Ed. by R. J. Kendall, S. M. Presley, G. P. Austin, and P. N. Smith (CRC, New York, 2008).Google Scholar
  17. 17.
    V. N. Aleksandrov and V. I. Emel’yanov, Toxicants (Voenizdat, Moscow, 1991) [in Russian].Google Scholar
  18. 18.
    Chemical Warfare Agents, Ed. by S. M. Somani (Academic, San Diego, 1992).Google Scholar
  19. 19.
    Z. Franke, Chemistry of Toxicants (Khimiya, Moscow, 1973) [in Russian].Google Scholar
  20. 20.
    L. S. Ivlev and Yu. A. Dovgalyuk, Physics of Atmospheric Aerosol Systems (NIIKh SPbGU, St. Petersburg, 1999) [in Russian].Google Scholar
  21. 21.
    Handbook of Toxicology of Chemical Warfare Agents, Ed. by R. Gupta (Academic, New York, 2009).Google Scholar
  22. 22.
    A. Melnick, Biological, Chemical, and Radiological Terrorism (Springer, Berlin, Heidelberg, 2010).Google Scholar
  23. 23.
    E. Croddy, Chemical and Biological Warfare (Copernicus, Göttingen, 2002).CrossRefGoogle Scholar
  24. 24.
    D. Liddick, Eco-Terrorism: Radical Environmental and Animal Liberation Movements (Greenwood, Portsmouth, 2006).Google Scholar
  25. 25.
    P. I. Sidorov, Ekol. Cheloveka, No. 7, 12 (2005).Google Scholar
  26. 26.
    G. Weimann and B. Hoffman, Terrorism in Cyberspace: The Next Generation (Columbia Univ. Press, Washington, 2015).Google Scholar
  27. 27.
    Cyber Warfare and Cyber Terrorism, Ed. by L. Janczewski and A. Colarik (Idea Group Reference, Copenhagen, 2007).Google Scholar
  28. 28.
    A. V. Taran, Vestn. RUDN, Ser. Politol., No. 2, 37 (2009).Google Scholar
  29. 29.
    Stand-off Detection of Suicide Bombers and Mobile Subjects, Ed. by H. Schubert and A. Rimski-Korsakov (Springer, Dordrecht, Netherlands, 2006).Google Scholar
  30. 30.
    S. Yelleti, E. Wilkins, R. A. Sitdikov, and I. Seoudi, in Sensors for Chemical and Biological Applications, Ed. by M. Ram and V. N. Y. Bhethanabotla (CRC, New York, 2010), p. 277.Google Scholar
  31. 31.
    Counterterrorist Detection Techniques of Explosives, Ed. by J. Yinon (Elsevier, New York, 2011).Google Scholar
  32. 32.
    E. M. A. Hussein and E. J. Walker, Rad. Meas. 29, 581 (1998).CrossRefGoogle Scholar
  33. 33.
    S. Singh and M. Singh, Signal Proces. 83, 31 (2003).CrossRefGoogle Scholar
  34. 34.
    Aspects of Explosives Detection, Ed. by M. Marshall (Elsevier, New York, 2008).Google Scholar
  35. 35.
    Sh. Sh. Nabiev and L. A. Palkina, in Proceedings of the 5th International Conference on Atmosphere, Ionosphere, Safety AIS-2016, Ed. by I. V. Karpov (I. Kant Baltic Fed. Univ., Kaliningrad, 2016), p. 64.Google Scholar
  36. 36.
    Z. Bielecki, J. Janucki, A. Kawalec, et al., Metrol. Meas. Syst. 19, 3 (2012).CrossRefGoogle Scholar
  37. 37.
    A. V. Kuznetsov, in Detection of Bulk Explosives Advanced Techniques Against Terrorism, Vol. 138 of NATO Sciece Series, Ed. by H. Schubert and A. Kuznetsov (Kluwer Academic, Dordrecht, 2004), p. 7.CrossRefGoogle Scholar
  38. 38.
    K. Wells and D. A. Bradley, Appl. Radiat. Isotopes 70, 1729 (2012).CrossRefGoogle Scholar
  39. 39.
    H. E. Martz, C. M. Logan, D. J. Schneberk, and P. J. Shull, X-Ray Imaging: Fundamentals, Industrial Techniques, and Applications (CRC, New York, 2010).Google Scholar
  40. 40.
    R. C. Runkle and T. A. White, Nucl. Instrum. Methods Phys. Res. A 603, 510 (2009).CrossRefGoogle Scholar
  41. 41.
    A. I. Laikin and Yu. A. Platovskikh, At. Energy 109, 207 (2010).CrossRefGoogle Scholar
  42. 42.
    G. Yu. Grigor’ev, M. D. Karetnikov, Sh. Sh. Nabiev, et al., Vopr. Oboron. Tekh., Ser. 16: Tekh. Sredstva Protivodeitsv. Terrorizmu, Nos. 7–8, 33 (2008).Google Scholar
  43. 43.
    Committee of the Review Existing and Potential Standoff Explosives Detection Techniques, Existing and Potential Standoff Explosives Detection Techniques (The National Academies Press, Washington DC, 2004). Scholar
  44. 44.
    A. M. Yousri, A. M. Osman, W. A. Kansouh, et al., Arm. J. Phys. 5, 1 (2012).Google Scholar
  45. 45.
    V. S. Grechishkin and N. Ya. Sinyavskii, Phys. Usp. 40, 393 (1997).CrossRefGoogle Scholar
  46. 46.
    Explosives Detection using Magnetic and Nuclear Resonance Techniques, Ed. by J. Fraissard and O. Lapina (Springer, Dordrecht, Netherlands, 2009).Google Scholar
  47. 47.
    J. A. S. Smith, T. J. Rayner, M. D. Rowe, et al., J. Magn. Reson. 204, 139 (2010).CrossRefGoogle Scholar
  48. 48.
    J. I. Steinfeld and J. Wormhoudt, Ann. Rev. Phys. Chem. 49, 203 (1998).CrossRefGoogle Scholar
  49. 49.
    J. Yinon and S. Zitrin, The Analysis of Explosives, Pergamon Series in Analytical Chemistry (Pergamon, New York, London, 2013).Google Scholar
  50. 50.
    M. Leahy-Hoppa, M. Fitch, and R. Osiander, Anal. Bioanal. Chem. 395, 247 (2009).CrossRefGoogle Scholar
  51. 51.
    V. L. Vaks, E. G. Domracheva, Sh. Sh. Nabiev, et al., in Proceedigns of the 6th International Conference on Technical Means of Countering Terrorist and Criminal Explosions, St. Petersburg, 2010, p. 38.Google Scholar
  52. 52.
    D. Etayo, I. Maestrojuan, J. Teniente, et al., J. Infrared Millim. Terahertz Waves 34, 468 (2013).CrossRefGoogle Scholar
  53. 53.
    U. Puc, A. Abina, M. Rutar, et al., Appl. Opt. 54, 4495 (2015).CrossRefGoogle Scholar
  54. 54.
    Sh. Sh. Nabiev, D. B. Stavrovskii, L. A. Palkina, et al., Gorenie Plazmokhim. 11, 19 (2013).Google Scholar
  55. 55.
    D. Strle, B. Štefane, E. Zupanič, et al., Sensors 14, 11467 (2014).CrossRefGoogle Scholar
  56. 56.
    M. J. Lefferts and M. R. Castell, Anal. Methods 7, 9005 (2015).CrossRefGoogle Scholar
  57. 57.
    V. M. Gruznov, M. N. Baldin, A. L. Makas’, and B. G. Titov, J. Anal. Chem. 66, 1121 (2011).CrossRefGoogle Scholar
  58. 58.
    Gas Chromatography, Ed. by C. Poole (Elsevier, New York, 2012).Google Scholar
  59. 59.
    P.-H. Stefanuto, K. A. Perrault, J-F. Focant, and S. L. Forbes, Chromatography 2, 213 (2015).CrossRefGoogle Scholar
  60. 60.
    T. P. Forbes and E. Sisco, Anal. Chem. 86, 7788 (2014).CrossRefGoogle Scholar
  61. 61.
    E. Maiolini, S. Girotti, E. Ferri, et al., Ovidius Univ. Ann. Chem. 20, 57 (2009).Google Scholar
  62. 62.
    A. L. Makas, M. L. Troshkov, A. S. Kudryavtsev, and V. M. Lunin, J. Chromatogr. B 800, 63 (2004).CrossRefGoogle Scholar
  63. 63.
    M. Mäkinen, M. Nousiainen, and M. Sillanpää, Mass Spectrosc. Rev. 30, 940 (2011).Google Scholar
  64. 64.
    J. M. Nilles, T. R. Connell, S. T. Stokes, and H. D. Durst, Propell. Explos. Pyrotech. 35, 446 (2010).CrossRefGoogle Scholar
  65. 65.
    E. S. Chernetsova, G. E. Morlock, and I. A. Revelsky, Russ. Chem. Rev. 80, 235 (2011).CrossRefGoogle Scholar
  66. 66.
    D. H. Nguyen, S. Locquiao, P. Huynh, et al., in Electronic Noses and Sensors for the Detection of Explosives, Ed. by J. W. Gardner and J. Yinon, NATO Sci. Ser. II: Math. Phys. Chem. (Kluwer Academic, Dordrecht, 2004), p. 71.Google Scholar
  67. 67.
    A. M. Jiménez and M. J. Navas, J. Hazard. Mater. 106, 1 (2004).CrossRefGoogle Scholar
  68. 68.
    R. Ewing, D. A. Atkinson, G. A. Eiceman, and G. J. Ewing, Talanta 54, 515 (2001).CrossRefGoogle Scholar
  69. 69.
    I. A. Buryakov, J. Anal. Chem. 66, 674 (2011).CrossRefGoogle Scholar
  70. 70.
    G. A. Eiceman, Z. Karpas, and H. H. Hill, Jr., Ion Mobility Spectrometry, 3rd ed. (CRC, New York, London, 2013).Google Scholar
  71. 71.
    Y. Sun, Field Detection Technologies for Explosives (ILM Publ., Dorset, 2009).Google Scholar
  72. 72.
    D. Meschede, Optics, Light and Lasers: The Practical Approach to Modern Aspects of Photonics and Laser Physics, 2nd ed. (Wiley-VCH, New York, 2007).Google Scholar
  73. 73.
    S. Hooker and C. Webb, Laser Physics (Oxford Univ. Press, Oxford, 2010).Google Scholar
  74. 74.
    V. V. Apollonov, High-Power Optics: Lasers and Applications, Vol. 192 of Springer Series in Optical Sciences (Springer, Dordrecht, 2014).Google Scholar
  75. 75.
    D. S. Moore, Sense Imaging, No. 8, 9 (2007).CrossRefGoogle Scholar
  76. 76.
    A. I. Karapuzikov, Sh. Sh. Nabiev, A. I. Nadezhdinskii, and Yu. N. Ponomarev, Atmos. Ocean. Opt. 24, 133 (2011).CrossRefGoogle Scholar
  77. 77.
    C. Bauer, U. Willer, and W. Schade, Opt. Eng. 49, 111126 (2010).CrossRefGoogle Scholar
  78. 78.
    P. M. Pellegrino, E. L. Holthoff, and M. E. Farrell, Laser-Based Optical Detection of Explosives (CRC, Boca Raton, 2015).Google Scholar
  79. 79.
    C. W. van Neste, L. R. Senesac, and T. Thundat, Anal. Chem. 81, 1952 (2009).CrossRefGoogle Scholar
  80. 80.
    S. Wallin, A. Pettersson, H. Ostmark, and A. Hobro, Anal. Bioanal. Chem. 395, 259 (2009).CrossRefGoogle Scholar
  81. 81.
    A. Mukherjee, S. von der Porten, and C. K. N. Patel, Appl. Opt. 49, 2072 (2010).CrossRefGoogle Scholar
  82. 82.
    L. A. Skvortsov, Quantum Electron. 42, 1 (2012).CrossRefGoogle Scholar
  83. 83.
    R. G. Smith, N. D’Souza, and S. Nicklin, Analyst 133, 571 (2008).CrossRefGoogle Scholar
  84. 84.
    N. Yu. Il’kukhin, Cand. Sci. (Tech. Sci.) Dissertation (SPb State Univ. Civil Aviation, St. Petersburg, 2016).Google Scholar
  85. 85.
    S. Singh, J. Hazard. Mater. 144, 15 (2007).CrossRefGoogle Scholar
  86. 86.
    X-M. Chen, B-Y. Su, X-H. Song, et al., Trends Anal. Chem. 30, 665 (2011).CrossRefGoogle Scholar
  87. 87.
    Z. Naal, J. H. Park, S. Bernhard, et al., Anal. Chem. 74, 140 (2002).CrossRefGoogle Scholar
  88. 88.
    N. Kumar and S. Kumbhat, Essentials in Nanoscience and Nanotechnology (Wiley, New York, 2016).CrossRefGoogle Scholar
  89. 89.
    R. Wilson, C. Clavering, and A. Hutchinson, J. Electroanal. Chem. 557, 109 (2003).CrossRefGoogle Scholar
  90. 90.
    V. Udod, J. Van, S. Osipov, et al., J. Phys.: Conf. Ser. 671, 012059 (2016).Google Scholar
  91. 91.
    V. Ryzhikov, S. Naydenov, G. Onyschenko, et al., Nucl. Instrum. Methods Phys. Res. A 603, 349 (2009).CrossRefGoogle Scholar
  92. 92.
    H. Vogel, Eur. J. Radiol. 63, 227 (2007).CrossRefGoogle Scholar
  93. 93.
    G. Zentai, Int. J. Signal Imaging Syst. Eng. 3, 13 (2010).CrossRefGoogle Scholar
  94. 94.
    A. Mouton and T. P. Breckon, J. X-Ray Sci. Technol. 23, 531 (2015).CrossRefGoogle Scholar
  95. 95.
    A. V. Kovalev, Mir Bezopasn., No. 5, 21 (2004).Google Scholar
  96. 96.
    Yu. I. Ol’shanskii, Sist. Bezopasn., Svyazi Kommunikats., No. 21, 18 (1998).Google Scholar
  97. 97.
    V. A. Klimenov, S. P. Osipov, and A. K. Temnik, Russ. J. Nondestr. Test. 49, 642 (2013).CrossRefGoogle Scholar
  98. 98.
    V. D. Ryzhikov, A. D. Opolonin, V. G. Volkov, et al., Visn. NTU KhPI, No. 34 (1007), 43 (2013).Google Scholar
  99. 99.
    A. Chalmers, Proc. SPIE 5071, 388 (2003).CrossRefGoogle Scholar
  100. 100.
    C. Paulus, J. Tabary, P. N. Billon, et al., J. Instrum. 8, 04003 (2013).CrossRefGoogle Scholar
  101. 101.
    R. V. Kishore Kumar and G. Murali, Int. J. Appl. Eng. Res. 11, 504.Google Scholar
  102. 102.
    A. Vanimireddy and D. ArunaKumari, Int. J. Eng. Trends Technol. 3, 277 (2012).Google Scholar
  103. 103.
    G. Harding, Phys. Chem. 71, 869 (2004).Google Scholar
  104. 104.
    A. V. Kovalev, Spets. Tekh., No. 6, 16 (1999).Google Scholar
  105. 105.
    A. Buffler, Radiat. Phys. Chem. 71, 853 (2004).CrossRefGoogle Scholar
  106. 106.
    R. C. Runkle and T. A. White, Nucl. Instrum. Methods Phys. Res. A 603, 510 (2009).CrossRefGoogle Scholar
  107. 107.
    V. Yu. Plakhotnik and G. A. Polyakov, Vestn. KGPU, No. 2 (43), 97 (2007).Google Scholar
  108. 108.
    S. Steward and D. Forsht, Appl. Radiat. Isotopes 63, 795 (2005).CrossRefGoogle Scholar
  109. 109.
    L. Grodzins, Nucl. Instrum. Methods Phys. Res. B 56–57, 829 (1991).CrossRefGoogle Scholar
  110. 110.
    L. Z. Dzhilavyan, A. I. Karev, and V. G. Raevskii, Izv. Akad. Nauk, Ser. Fiz. 74, 635 (2010).Google Scholar
  111. 111.
    E. L. Reber, C. Larry, and G. Blackwood, Sens Imaging 8, 121 (2007).CrossRefGoogle Scholar
  112. 112.
    F. Brooks, M. Drosg, F. Smit, and C. Wikner, Appl. Radiat. Isotopes 70, 119 (2011).CrossRefGoogle Scholar
  113. 113.
    S. K. Sharma, S. Jakhar, R. Shukla, et al., Fusion Eng. Des. 85, 1562 (2010).CrossRefGoogle Scholar
  114. 114.
    A. Papp and J. Csikai, J. Radioanal. Nucl. Chem. 288, 363 (2011).CrossRefGoogle Scholar
  115. 115.
    M. D. Karetnikov, A. I. Klimov, K. N. Kozlov, E.A. Meleshko, I. E. Ostashev, N. A. Tupikin, G. V. Yakovlev, E. P. Bogolyubov, S. A. Korotkov, and T. O. Khasaev, Instrum. Exp. Tech. 49, 654 (2006).CrossRefGoogle Scholar
  116. 116.
    M. Karetnikov, A. Klimov, and S. Korotkov, Nucl. Instrum. Methods Phys. Res. B 261, 307 (2007).CrossRefGoogle Scholar
  117. 117.
    D. N. Vakhtin, A. V. Evsenin, A. V. Kuznetsov, et al., in Proceedings of the NATO ARW No. 977941 on Detection of Explosives and Land Mines: Methods and Field Experience, St. Petersburg, Russia, 2001, p. 59.Google Scholar
  118. 118.
    D. N. Vakhtin, I. Yu. Gorshkov, A. V. Evsenin, et al., in Detection and Disposal of Improvised Explosives, Ed. by H. Schubert and A. Kuznetsov (Springer, 2006), p. 87.CrossRefGoogle Scholar
  119. 119.
    V. M. Bystritskii, N. I. Zamyatin, E. V. Zubarev, V. L. Rapatsky, Yu. N. Rogov, I. V. Romanov, A. B. Sadovsky, A. V. Salamatin, M. G. Sapozhnikov, M. V. Safonov, V. M. Slepnev, and A. V. Philipov, Phys. Part. Nucl. Lett. 10, 442 (2013).CrossRefGoogle Scholar
  120. 120.
    L. Z. Dzhilavyan, A. I. Karev, and V. G. Raevsky, Bull. Russ. Acad. Sci.: Phys. 75, 257 (2011).CrossRefGoogle Scholar
  121. 121.
    W. P. Trower, Nucl. Instrum. Methods Phys. Res. B 79, 589 (1993).CrossRefGoogle Scholar
  122. 122.
    A. S. Belousov, A. I. Karev, E. I. Malinovskii, et al., Nauka Pr-vu, No. 6, 33 (2000).Google Scholar
  123. 123.
    A. I. Karev, V. G. Raevskii, Yu. A. Konyaev, et al., Elektron. NTB, No. 1, 54 (2002).Google Scholar
  124. 124.
    N. Fischer, T. M. Klapötke, J. Stierstorfer, and C. Wiedemann, Polyhedron 30, 2374 (2011).CrossRefGoogle Scholar
  125. 125.
    V. S. Grechishkin and N. Ya. Sinyavskii, Phys. Usp. 40, 393 (1997).CrossRefGoogle Scholar
  126. 126.
    A. Gregorovic and T. Apih, J. Magn. Resonance 198, 215 (2009).CrossRefGoogle Scholar
  127. 127.
    Explosives, 6th ed., Ed. by R. Meyer and J. Köhler (Wiley-VCH, New York, 2007).Google Scholar
  128. 128.
    T. M. Osa, L. M. Cerionia, J. Forguez, et al., Physica B 389, 45 (2007).CrossRefGoogle Scholar
  129. 129.
    N. P. Semeikin, Yu. A. Sharshin, and B. V. Ekvist, Vzryvn. Delo, No. 105/62, 168 (2011).Google Scholar
  130. 130.
    Yu. I. Belyi, O. A. Potsepnya, G. K. Semin, et al., Spets. Tekh., No. 2, 32 (2002).Google Scholar
  131. 131.
    V. S. Grechishkin and N. Ya. Sinyavskii, Phys. Usp. 36, 980 (1993).CrossRefGoogle Scholar
  132. 132.
    V. S. Grechishkin, Appl. Phys. A 55, 505 (1992).CrossRefGoogle Scholar
  133. 133.
    V. S. Grechishkin and V. P. Anferov, Adv. Nucl. Quadruple Reson., No. 4, 71 (1980).Google Scholar
  134. 134.
    J. A. Smith, M. Blanz, T. J. Rayner, et al., J. Magn. Reson. 213, 191 (2011).CrossRefGoogle Scholar
  135. 135.
    X. Zhang, N. Schemm, S. Balkır, and M. W. Hoffman, IEEE Sensors J. 14, 497 (2014).CrossRefGoogle Scholar
  136. 136.
    D. J. Ingram, Spectroscopy at Radio and Microwave Frequencies (Springer, Berlin, 2012).Google Scholar
  137. 137.
    A. A. Krasil’nikov, Yu. Yu. Kulikov, V. G. Ryskin, and A. M. Shchitov, Izv. Akad. Nauk, Ser. Fiz. 67, 1786 (2003).Google Scholar
  138. 138.
    V. V. Tkachenko, N. S. Izhko, and M. I. Ugrin, Tekh. Prib. SVCh, No. 1, 50 (2008).Google Scholar
  139. 139.
    D. P. Soldatov, V. V. Gladun, Yu. A. Pirogov, et al., Uch. Zap. Fiz. Fakult. Mosk. Univ. 1, 120109 (2012).Google Scholar
  140. 140.
    D. T. Petkie, F. C. de Lucia, C. Casto, et al., Proc. SPIE 5989, 359 (2005).Google Scholar
  141. 141.
    T. Hu, Z. Xiao, J. Xu, and L. Wu, Proc. Eng. 7, 28 (2010).CrossRefGoogle Scholar
  142. 142.
    R. Appleby and R. N. Anderton, Proc. IEEE 95, 1683 (2007).CrossRefGoogle Scholar
  143. 143.
    S. T. Shipman and B. H. Pate, New Techniques in Microwave Spectroscopy (Wiley, New York, 2011).CrossRefGoogle Scholar
  144. 144.
    I. Jaeger, J. Stiens, G. Koers, et al., Microwave Opt. Tech. Lett. 48, 1722 (2006).CrossRefGoogle Scholar
  145. 145.
    Sh. Sh. Nabiev, V. L. Vaks, A. V. Volodin, et al., Nauka Tekhnol. Prom-sti, No. 2, 45 (2009).Google Scholar
  146. 146.
    V. L. Vaks, A. V. Volodin, Sh. Sh. Nabiev, et al., Vopr. Oboron. Tekh., Ser. 16: Tekh. Sr-va Protivodeistv. Terrorizmu, Nos. 11–12, 23 (2009).Google Scholar
  147. 147.
    M. C. Kemp, P. F. Taday, B. E. Cole, et al., Proc. SPIE 5070, 44 (2003).CrossRefGoogle Scholar
  148. 148.
    Y. Chen, H. Liu, Y. Deng, et al., Proc. SPIE 5411, 1 (2004).CrossRefGoogle Scholar
  149. 149.
    J. Chen, Y. Chen, H. Zhao, et al., Opt. Express 15, 12060 (2007).CrossRefGoogle Scholar
  150. 150.
    W. Tribe, D. A. Newnham, P. F. Taday, and M. C. Kemp, Proc. SPIE 5354, 168 (2004).CrossRefGoogle Scholar
  151. 151.
    K. Yamamoto, M. Yamaguchi, F. Miyamaru, et al., Jpn. J. Appl. Phys. 43, L414 (2004).CrossRefGoogle Scholar
  152. 152.
    L. Yun-Shik, Principles of Terahertz Science and Technology (Springer, New York, 2008).Google Scholar
  153. 153.
    Z. Zhang, Y. Zhang, G. Zhao, and C. Zhang, Optik 18, 325 (2007).CrossRefGoogle Scholar
  154. 154.
    Terahertz Spectroscopy and Imaging, Ed. by K.-E. Peiponen, A. Zeitler, and M. Kuwata-Gonokami (Springer, Heidelberg, 2012).Google Scholar
  155. 155.
    J. F. Federici, B. Sculkin, F. Huang, et al., Semicond. Sci. Technol. 20, 266 (2005).CrossRefGoogle Scholar
  156. 156.
    C. Baker, W. R. Tribe, T. Lo, et al., Proc. SPIE 5790, 1 (2005).CrossRefGoogle Scholar
  157. 157.
    H. Liu, Y. Chen, G. J. Bastians, and X-C. Zhang, Opt. Express 14, 415 (2006).CrossRefGoogle Scholar
  158. 158.
    H. Zhong, A. Redo, Y. Chen, and X-C. Zhang, Proc. SPIE 6212, 62120L (2006).CrossRefGoogle Scholar
  159. 159.
    H. Hubers, A. D. Semenov, H. Richter, and U. Böttger, Proc. SPIE 6549, 65490A (2007).CrossRefGoogle Scholar
  160. 160.
    Trace Chemical Sensing of Explosives, Ed. by R. Woodfin (Wiley, New York, 2007).Google Scholar
  161. 161.
    V. M. Gruznov, M. N. Baldin, and V. G. Filonenko, in Vapor and Trace Detection of Explosives for Anti-Terrorism Purposes, Ed. by M. Krausa and A. Reznev, NATO Sci. Ser. II 167, 87 (2004).CrossRefGoogle Scholar
  162. 162.
    B. T. Kenna, F. J. Conrad, and D. W. Hannum, in Proceedings of the 1st International Symposium on Explosion Detection Technology, Ed. by S. M. Khan (FAA, Atlantic City, New York, 1991), p. 510.Google Scholar
  163. 163.
    Sh. Sh. Nabiev, V. L. Vaks, A. V. Volodin, et al., Vopr. Oboron. Tekh., Ser. 16: Tekh. Sr-va Protivodeistv. Terrorizmu, Nos. 11–12, 78 (2009).Google Scholar
  164. 164.
    Sh. Sh. Nabiev, A. I. Nadezhdinskii, D. B. Stavrovskii, V. L. Vaks, E. G. Domracheva, S. I. Pripolzin, E. A. Sobakinskaya, and M. B. Chernyaeva, Russ. J. Phys. Chem. A 85, 1404 (2011).CrossRefGoogle Scholar
  165. 165.
    E. Bender, A. Hogan, D. Leggett, et al., J. Forensic Sci. 37, 1673 (1992).CrossRefGoogle Scholar
  166. 166.
    G. B. Manelis, G. M. Nazin, Yu. I. Rubtsov, and V. A. Strunin, Thermal Decomposition and Combustion of Explosives and Powders (Nauka, Moscow, 1996) [in Russian].Google Scholar
  167. 167.
    Energetic Materials: Thermophysical Properties, Predictions, and Experimental Measurements, Ed. by V. Boddu and P. Redner (CRC, Boca Raton, 2013).Google Scholar
  168. 168.
    L. Mokalled, M. Al-Husseini, K. Y. Kabalan, and A. El-Hajj, Int. J. Sci. Eng. Res. 5, 337 (2014).Google Scholar
  169. 169.
    C. A. Krueger, C. Hilton, M. Osgood, et al., Int. J. Ion Mobil. Spec. 12, 33 (2009).CrossRefGoogle Scholar
  170. 170.
    V. M. Gruznov, Express Gas Chromatography for Trace Analysis in the Field (RITs NGU, Novosibirsk, 2014) [in Russian].Google Scholar
  171. 171.
    J. S. Caygill, F. Davis, and S. P. J. Higson, Talanta 88, 14 (2012).CrossRefGoogle Scholar
  172. 172. (2011).Google Scholar
  173. 173.
    A. T. Lebedev, Mass-Spectrometry for Analysis of Environmental Objects (Tekhnosfera, Moscow, 2013) [in Russian].Google Scholar
  174. 174.
    E. Hoffmann and V. Stroobant, Mass Spectrometry: Principles and Applications, 3rd ed. (Wiley-Interscience, New York, 2007).Google Scholar
  175. 175.
    N. Talaty, C. C. Mulligan, D. R. Justes, et al., Analyst 133, 1532 (2008).CrossRefGoogle Scholar
  176. 176.
    R. B. Cody, J. A. Laramée, and H. D. Durst, Anal. Chem. 77, 2297 (2005).CrossRefGoogle Scholar
  177. 177.
    Z. Takats, J. M. Wiseman, B. Gologan, and R. G. Cooks, Science 306, 471 (2004).CrossRefGoogle Scholar
  178. 178.
    M. Tourné, J. Forensic Res. 4 (6), S12 (2013).Google Scholar
  179. 179.
    V. D. Gladilovich and E. P. Podol’skaya, Nauch. Priborostr. 20 (4), 36 (2010).Google Scholar
  180. 180.
    A. L. Makas and M. L. Troshkov, J. Chromatogr. B 800, 55 (2004).CrossRefGoogle Scholar
  181. 181.
    Sh. Sh. Nabiev and L. A. Palkina, in Proceedings of the 3rd International Conference on Atmosphere, Ionosphere, Safety AIS-2012 (Kalinigrad, 2012), p. 122.Google Scholar
  182. 182.
    O. M. Primera-Pedrozo, Y. M. Soto-Feliciano, L. C. Pacheco-Londoño, and S. P. Hernández-Rivera, Sens. Imaging 10, 1 (2009).CrossRefGoogle Scholar
  183. 183.
    B. E. Bernacki and N. Hô, Proc. SPIE 6945, 694517 (2008).CrossRefGoogle Scholar
  184. 184.
    B. A. Paldus, B. G. Fidric, S. S. Sanders, et al., Proc. SPIE 5617, 312 (2004).CrossRefGoogle Scholar
  185. 185.
    Cavity Ring Down Spectroscopy: Techniques and Applications, Ed. by G. Berden and R. Engeln (Wiley, New York, 2009).Google Scholar
  186. 186.
    M. Snels, T. Venezia, and L. Belfiore, Chem. Phys. Lett. 489, 134 (2010).CrossRefGoogle Scholar
  187. 187.
    H. Östmark, M. Nordberg, and T. E. Carlsson, Appl. Opt. 50, 5592 (2011).CrossRefGoogle Scholar
  188. 188.
    D. D. Tuschel, A. V. Mikhonin, B. E. Lemoff, and S. A. Asher, Appl. Spectrosc. 64, 425 (2010).CrossRefGoogle Scholar
  189. 189.
    G. Comanescu, C. K. Manka, J. Grun, et al., Appl. Spectrosc. 62, 833 (2008).CrossRefGoogle Scholar
  190. 190.
    G. A. Baker and D. S. Moore, Anal. Bioanal. Chem. 382, 1751 (2005).CrossRefGoogle Scholar
  191. 191.
    S. Sharma, A. K. Misra, and B. Sharma, Spectrochim. Acta A 61, 2404 (2005).CrossRefGoogle Scholar
  192. 192.
    B. Piorek, S. Lee, M. Moskovits, and C. Meinhart, Anal. Chem. 84, 9700 (2012).CrossRefGoogle Scholar
  193. 193.
    Laser-Induced Breakdown Spectroscopy, Ed. by A. W. Miziolek, V. Palleschi, and I. Schechter (Cambridge Univ. Press, Cambridge, UK, 2006).Google Scholar
  194. 194.
    Laser-Induced Breakdown Spectroscopy.Theory and Applications, Ed. by S. Musazzi and U. Perini (Springer, Berlin, Heidelberg, 2014).Google Scholar
  195. 195.
    X. Chen, D. Guo, F-S. Choa, et al., Appl. Opt. 52, 2626 (2013).CrossRefGoogle Scholar
  196. 196.
    K. L. McNesby and R. A. Pesce-Rodriguez, in Handbook of Vibrational Spectroscopy, Ed. by J. M. Chalmers and P. R. Griffiths (Wiley, West Sussex, UK, 2002), p. 3152.Google Scholar
  197. 197.
    Sh. Sh. Nabiev, D. B. Stavrovskii, L. A. Palkina, et al., Gorenie Plazmokhim. 11, 277 (2013).Google Scholar
  198. 198.
    Sh. Sh. Nabiev, D. B. Stavrovskii, L. A. Palkina, V. L. Zbarskii, N. V. Yudin, V. L. Vaks, E. G. Domracheva, and M. B. Chernyaeva, Russ. J. Phys. Chem. B 7, 203 (2013).CrossRefGoogle Scholar
  199. 199.
    E. N. Golubeva and Sh. Sh. Nabiev, in Proceedings of the 1st International Conference On the Boundary of Sciences, Physicochemical Series, Kazan, 2013, p. 43.Google Scholar
  200. 200.
    L. Pacheco-Londoño, W. Ortiz-Rivera, O. Primera-Pedrozo, and S. Hernandez-Rivera, Anal. Bioanal. Chem. 395, 323 (2009).CrossRefGoogle Scholar
  201. 201.
    S. P. Hernandez-Rivera, L. C. Pacheco-Londoño, W. Ortiz-Rivera, et al., in Explosive Materials: Classification, Composition and Properties, Ed. by T. J. Janssen (Nova Science, New York, 2011), p. 231.Google Scholar
  202. 202.
    L. A. Skvortsov, Quantum Electron. 41, 1051 (2012).CrossRefGoogle Scholar
  203. 203.
    C. Ramos and P. J. Dagdigian, Appl. Opt. 46, 620 (2007).CrossRefGoogle Scholar
  204. 204.
    J. Wojtas, J. Mikolajczyk, and Z. Bielecki, Sensors 13, 7570 (2013).CrossRefGoogle Scholar
  205. 205.
    D. Cherry, M. S. Khan, and M. N. Reddy, Def. Sci. J. 65, 25 (2015).CrossRefGoogle Scholar
  206. 206.
    R. L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, New York, 2000).CrossRefGoogle Scholar
  207. 207.
    J. Sylvia, J. Janni, J. D. Klein, and K. M. Spencer, Anal. Chem. 72, 5834 (2000).CrossRefGoogle Scholar
  208. 208.
    J. I. Jeréz-Rozo, M. del Rocío Balaguera, A. Cabanzo, et al., Proc. SPIE 6201, 62012G (2006).CrossRefGoogle Scholar
  209. 209.
    M. Gaft and L. Nagli, Opt. Mater. 30, 1739 (2008).CrossRefGoogle Scholar
  210. 210.
    D. S. Moore and R. J. Scharff, Anal. Bioanal. Chem 393, 1618 (2009).Google Scholar
  211. 211.
    A. Nadezhdinskii, Ya. Ponurovskii, and D. Stavrovskii, Appl. Phys. B 90, 361 (2008).CrossRefGoogle Scholar
  212. 212.
    Y. Bai, S. R. Darvish, S. Slivken, et al., Appl. Phys. Lett. 92, 101105 (2008).CrossRefGoogle Scholar
  213. 213.
    L. A. Skvortsov, Laser Methods of Remote Detection of Chemical Compounds on Body Surface (Tekhnosfera, Moscow, 2016) [in Russian].Google Scholar
  214. 214.
    C. A. Munson, J. L. Gottfried, F. C. de Lucia, et al., Rep. No. ADA474060 (Army Research Lab Aberdeen Proving Ground MD Weapons and Mater. Research Directorate, 2007).Google Scholar
  215. 215.
    R. Hummel and T. Dubroca, in Encyclopedia of Analytical Chemistry. Applications, Theory and Instrumentation, Ed. by R. A. Meyers (Wiley, New York, Chichester, 2013), Vol. 1, p. 2148.Google Scholar
  216. 216.
    Sh. Sh. Nabiev, Vestn. RAEN, No. 1, 14 (2012).Google Scholar
  217. 217.
    J. Scaffidi, W. Pearman, M. Lawrence, et al., Appl. Opt. 43, 5243 (2004).CrossRefGoogle Scholar
  218. 218.
    J. J. Zayhowski and A. L. Wilson, Jr., IEEE J. Quantum Electron. 38, 1449 (2002).CrossRefGoogle Scholar
  219. 219.
    F. Tittel, G. Wysocki, A. Kosterev, and Y. Bakhirkin, in Mid-Infrared Coherent Sources and Applications, Ed. by M. Ebrahim-Zadeh and I. T. Sorokina (Springer, Berlin, 2007), p. 467.Google Scholar
  220. 220.
    R. Lewicki, G. Wysocki, A. Kosterev, and F. Tittel, Opt. Express 15, 7357 (2007).CrossRefGoogle Scholar
  221. 221.
    H. Wu, L. Dong, X. Liu, et al., Sensors 15, 26743 (2015).CrossRefGoogle Scholar
  222. 222.
    M. B. Pushkarsky, M. E. Webber, and C. K. N. Patel, Appl. Phys. B 77, 381 (2003).CrossRefGoogle Scholar
  223. 223.
    A. Mukherjee, M. Prasanna, M. Lane, et al., Appl. Opt. 47, 4884 (2008).CrossRefGoogle Scholar
  224. 224.
    M. B. Pushkarsky, I. G. Dunayevskiy, M. Prasanna, et al., Proc. Natl. Acad. Sci. USA 103, 19630 (2006).CrossRefGoogle Scholar
  225. 225.
    C. K. N. Patel, Eur. Phys. J. Spec. Top. 153, 1 (2008).CrossRefGoogle Scholar
  226. 226.
    C. Bauer, U. Willer, R. Lewicki, et al., J. Phys.: Conf. Ser. 157, 012002 (2009).Google Scholar
  227. 227.
    G. Yu. Grigor’ev, A. I. Karapuzikov, Sh. Sh. Nabiev, et al., Vopr. Oboron. Tekh., Ser. 16: Tekh. Sr-va Protivodeistv. Terrorizmu, Nos. 1–2, 86 (2009).Google Scholar
  228. 228.
    L. A. Skvortsov and E. M. Maksimov, Quantum Electron. 40, 565 (2010).CrossRefGoogle Scholar
  229. 229.
    K. H. Michaelian, Photoacoustic IR Spectroscopy: Instrumentation, Applications and Data Analysis (Wiley-VCH, New York, 2010).CrossRefGoogle Scholar
  230. 230.
    Sh. Sh. Nabiev, Remote Laser-Optical Methods of Detection and Identification of Rocket Fuel Components (Kurchatov. Inst., Moscow, 2010) [in Russian].Google Scholar
  231. 231.
    T. Arusi-Parpar, D. Heflinger, and R. Lavi, Appl. Opt. 40, 6677 (2001).CrossRefGoogle Scholar
  232. 232.
    C. Wynn, R. Palmacci, K. Kunz, et al., Proc. SPIE 6954, 695407 (2008).CrossRefGoogle Scholar
  233. 233.
    C. Bauer, J. Burgmeier, C. Bohling, et al., in Proceedings of the NATO Advanced Research Workshop on Stand-Off Detection of Suicide-Bombers and Mobile Subjects (Springer, Berlin, 2006), p. 27.Google Scholar
  234. 234.
    A. Portnov, I. Bar, and S. Rosenwaks, Appl. Phys. B 98, 529 (2010).CrossRefGoogle Scholar
  235. 235.
    J. Hildenbrand, J. Herbst, J. Wollenstein, and A. Lambrecht, Proc. SPIE 7222, 72220B (2009).CrossRefGoogle Scholar
  236. 236.
    A. Mukherjee, S. von der Porten, and C. K. N. Patel, Appl. Opt. 49, 2072 (2010).CrossRefGoogle Scholar
  237. 237.
    A. Mouton and T. P. Breckon, Pattern Recognit. 58, 1961 (2015).CrossRefGoogle Scholar
  238. 238.
    Yu. N. Gavrish, I. Yu. Vakhrushin, A. V. Pavlenko, et al., Vopr. At. Nauki Tekh., No. 2 (48), 3 (2010).Google Scholar
  239. 239.
    W. Zhang, X. Li, and Z. Xu, Proc. Eng., No. 7, 203 (2010).CrossRefGoogle Scholar
  240. 240.
    V. A. Petrunin, S. A. Ogorodnikov, M. A. Arlychev, and I. E. Shevelev, Mosc. Univ. Phys. Bull. 70, 118 (2015).CrossRefGoogle Scholar
  241. 241.
    A. L. Lehnert and K. J. Kearfott, Nucl. Technol. 172, 325 (2010).CrossRefGoogle Scholar
  242. 242.
    P. Lecoq, A. Annenkov, A. Gektin, et al., Inorganic Scintillators for Detector Systems (Springer, Berlin, Heidelberg, 2006).Google Scholar
  243. 243.
    V. L. Vaks, E. G. Domracheva, Sh. Sh. Nabiev, et al., in Proceedings of the 6th International Conference on Technical Means of Countering Terrorist and Criminal Explosions, St. Petersburg, 2010, p. 38.Google Scholar
  244. 244.
    Y. Jiang, B. Jin, W. Xu, et al., Sci. China Inf. Sci. 55, 64 (2012).CrossRefGoogle Scholar
  245. 245.
    A. Shurakov, Y. Lobanov, and G. Goltsman, Supercond. Sci. Technol. 29, 023001 (2016).CrossRefGoogle Scholar
  246. 246.
    V. L. Vaks, E. G. Domracheva, A. A. Lastovkin, et al., Vestn. Nizhegor. Univ., No. 6 (1), 81 (2013).Google Scholar
  247. 247.
    D. G. Paveliev, Yu. I. Koshurinov, A. S. Ivanov, A.N. Panin, V. L. Vax, V. I. Gavrilenko, A. V. Antonov, V. M. Ustinov, and A. E. Zhukov, Semiconductors 46, 121 (2012).CrossRefGoogle Scholar
  248. 248.
    H.-B. Liu and X.-C. Zhang, Terahertz Frequency Detection and Identification of Materials and Objects, NATO Security through Science Series, Ed. by R. E. Miles (Springer, New York, 2007), p. 251.CrossRefGoogle Scholar
  249. 249.
    M. Greenfield, Y. Guo, and E. Bernstein, Chem. Phys. Lett. 430, 277 (2006).CrossRefGoogle Scholar
  250. 250.
    G. N. Shcherbakov, Spets. Tekh., No. 2, 18 (2000).Google Scholar
  251. 251.
    Sh. Sh. Nabiev, D. B. Stavrovskii, L. A. Palkina, et al., Vopr. Oboron. Tekh., Ser. 16: Tekh. Sr-va Protivodeistv. Terrorizmu, Nos. 11–12, 3 (2013).Google Scholar
  252. 252.
    R. F. Curl, F. Capasso, C. Gmachl, et al., Chem. Phys. Lett. 487, 1 (2010).CrossRefGoogle Scholar
  253. 253.
    Springer Handbook of Lasers and Optics, 2nd ed., Ed. by F. Träger (Springer, Berlin, Heidelberg, 2012).Google Scholar
  254. 254.
    M. Troccoli, A. Lyakh, J. Fan, et al., Opt. Mater. Express 3, 1546 (2013).CrossRefGoogle Scholar
  255. 255.
    A. Grisard, E. Lallier, and B. Gérard, Opt. Mater. Express 2, 1020 (2012).CrossRefGoogle Scholar
  256. 256.
    A. Boyko, G. Marchev, V. Petrov, et al., Opt. Express 23, 33460 (2015).CrossRefGoogle Scholar
  257. 257.
    C. M. Chernin, Multipass Systems in Optics and Spectroscopy (Fizmatlit, Moscow, 2010) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  1. 1.National Research Center “Kurchatov Institute,”MoscowRussia

Personalised recommendations