Russian Journal of Physical Chemistry B

, Volume 10, Issue 5, pp 825–829 | Cite as

Thermal oxidation and structure of polylactide–polyethylene blends

  • M. V. Podzorova
  • Yu. V. Tertyshnaya
  • T. V. Monakhova
  • A. A. Popov
Chemical Physics of Polymer Materials


The thermal oxidation of polylactide–low-density polyethylene mixtures with additives of oxidized polyethylene as an analogue of recyclable materials is studied. It is found that the polylactide is oxidized more slowly than polyethylene, whereas the introduction of up to 30 wt % of oxidized polyethylene accelerates the thermal oxidation of the mixtures, with the physical and mechanical properties of the resultant materials remaining suitable for practical use. It is established that the presence of oxidized polyethylene has virtually no effect on the melting point of polylactide and polyethylene, somewhat increasing, however, the degree of crystallinity of the components of the blend.


polylactide polymer blends thermal oxidation oxygen uptake kinetics oxidation rate 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Cock, A. A. Cuadri, M. Garcia-Morales, and P. Partal, Polym Test. 32, 716 (2013).CrossRefGoogle Scholar
  2. 2.
    L. S. Shibryaeva, Yu. V. Tertyshnaya, D. D. Pal’mina, and N. S. Levina, Sel’skokhoz. Mashiny Tekhnol., No. 6, 14 (2015).Google Scholar
  3. 3.
    C. Chen, L. Dong, and M. K. Cheung, Eur. Polym. J. 41, 958 (2005).CrossRefGoogle Scholar
  4. 4.
    P. Yu. Salikov, Ekol. Prom-st' Ross., No. 3, 16 (2014).Google Scholar
  5. 5.
    Yu. V. Tertyshnaya and L. S. Shibryaeva, Usp. Med. Mikol. 12, 145 (2014).Google Scholar
  6. 6.
    M. V. Podzorova, Yu. V. Tertyshnaya, and A. A. Popov, Russ. J. Phys. Chem. B 8, 726 (2014).CrossRefGoogle Scholar
  7. 7.
    H. Kang, B. Qiao, R. Wang, et al., Polymer 54, 2450 (2013).CrossRefGoogle Scholar
  8. 8.
    L. Li, W. Huang, B. Wang, et al., Polymer 68, 183 (2015).CrossRefGoogle Scholar
  9. 9.
    Yu. V. Tertyshnaya, S. G. Karpova, O. V. Shatalova, A. V. Krivandin, and L. S. Shibryaeva, Polymer Sci., Ser. A 58, 50 (2016).CrossRefGoogle Scholar
  10. 10.
    H.T. Hsu, H. Tan, and Y. L. Yao, Polymer. Degrad. Stabil. 97, 88 (2012).CrossRefGoogle Scholar
  11. 11.
    Yu. V. Tertyshnaya, Extended Abstract of Cand. Sci. (Chem.) Dissertation (Inst. Biochem. Phys. RAS, Moscow, 2004).Google Scholar
  12. 12.
    Yu. V. Tertyshnaya, L. S. Shibryaeva, and A. A. Popov, Russ. J. Phys. Chem. B 6, 38 (2012).CrossRefGoogle Scholar
  13. 13.
    T. V. Monakhova, P. M. Nedorezova, S. V. Pol’shchikov, A. A. Popov, and A. L. Margolin, Russ. J. Phys. Chem. B 8, 874 (2014).CrossRefGoogle Scholar
  14. 14.
    L.-T. Lim, R. Auras, and M. Rubino, Prog. Polym. Sci. 33, 820 (2008).CrossRefGoogle Scholar
  15. 15.
    Yu. V. Tertyshnaya and L. S. Shibryaeva, Plast. Massy, No. 1, 46 (2006).Google Scholar
  16. 16.
    E. T. Denisov, Oxidation and Degradation of Carbochain Polymers (Khimiya, Leningrad, 1990) [in Russian].Google Scholar
  17. 17.
    V. V. Kireev, Polymers, the Textbook for Higher Schools (Vyssh. Shkola, Moscow, 1992) [in Russian].Google Scholar
  18. 18.
    A. A. Ol’khov, Cand. Sci. (Tech. Sci.) Dissertation (Mosc. Inst. Fine Chem. Technol., Moscow, 2001).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Plekhanov Russian University of EconomicsMoscowRussia
  2. 2.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.All-Russia Research Institute of Mechanization for AgricultureMoscowRussia

Personalised recommendations