Russian Journal of Physical Chemistry B

, Volume 9, Issue 7, pp 1011–1017 | Cite as

Supercritical fluid encapsulation of acizol into aliphatic polyether microparticles

  • S. E. Bogorodski
  • L. I. Krotova
  • S. V. Kursakov
  • S. A. Minaeva
  • V. K. Popov
  • V. I. Sevast’yanov
Article

Abstract

Encapsulation of pharmaceutical grade acizol (Acizol® pharmaceutical substance) into bioresorbable D,L-polylactide and polylactoglycolide microparticles using supercritical carbon dioxide has been studied. An effective way for formation of polymer fine powders (mean particle size of about 10–20 µm) containing up to 20 wt % of the bioactive component without any organic solvent used has been suggested. Raman spectroscopy with spatial resolution was employed to analyze the distribution of acizol throughout the volume of the individual polymer microparticles and to study the kinetics of its release into saline. The rapid release (40–80% of the total amount of the encapsulated substance) from the samples under study was observed during the first hour, and then it was followed by a gradual, almost linear release between the 4th and 14th days of the experiment, with the total release continuing up to 100%.

Keywords

antidote against carbon monoxide acizol supercritical carbon dioxide controllable drug release 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Russian Therapeutic Reference Book, Ed. by A. G. Chuchalin (GEOTAR-Media, Moscow, 2005) [in Russian].Google Scholar
  2. 2.
    P. I. Sidorov, I. G. Mosyagin, and A. S. Sarychev, Medicine of Catastrophes (Academia, Moscow, 2012) [in Russian].Google Scholar
  3. 3.
    RF Patent No. 2070201 (1978).Google Scholar
  4. 4.
    Kh. Kh. Babaniyazov, L. V. Baikalova, V. K. Stankevich, V. A. Barinov, A. R. Ermakov, S. P. Nechiporenko, and B. A. Trofimov, in New Drugs: Achievements and Perspectives (Gilem, Ufa, 2005), p. 183 [in Russian].Google Scholar
  5. 5.
    RF Patent No. 2247558 (2005).Google Scholar
  6. 6.
    V. I. Sevast’yanov, L. A. Salomatina, E. G. Kuznetsova, M. V. Seregina, and Yu. B. Basok, Perspekt. Mater., No. 6, 55 (2008).Google Scholar
  7. 7.
    S. P. Cape, J. A. Villa, E. T. S. Huang, T. H. Yang, J. F. Carpenter, and R. E. Sievers, Pharmaceut. Res. 25, 1967 (2008).CrossRefGoogle Scholar
  8. 8.
    E. N. Antonov and V. K. Popov, Russ. J. Phys. Chem. B 8, 980 (2014).CrossRefGoogle Scholar
  9. 9.
    S. M. Howdle, M. S. Watson, M. J. Whitaker, V. K. Popov, M. C. Davies, F. S. Mandel, J. D. Wang, and K. M. Shakesheff, Chem. Commun., 109 (2001).Google Scholar
  10. 10.
    E. N. Antonov, S. E. Bogorodskii, B. M. Feldman, E. A. Markvicheva, L. D. Rumsh, and V. K. Popov, Sverkhkrit. Fluidy: Teor. Prakt. 3 (1), 34 (2008).Google Scholar
  11. 11.
    S. E. Bogorodskii, L. I. Krotova, S. A. Minaeva, G. V. Mishakov, V. G. Popov, Yu. B. Basok, and V. I. Sevast’yanov, Perspekt. Mater., No. 1, 23 (2013).Google Scholar
  12. 12.
    M. Vert, S. M. Li, G. Spenlehauer, and P. Guerin, J. Mater. Sci.: Mater. Med. 3, 432 (1992).Google Scholar
  13. 13.
    E. Reverchon, R. Adami, S. Cardea, and G. D. Porta, J. Supercrit. Fluids 47, 484 (2009).CrossRefGoogle Scholar
  14. 14.
    H. Tai, V. K. Popov, K. M. Shakesheff, and S. M. Howdle, Biochem. Soc. Trans. 35, 516 (2007).CrossRefGoogle Scholar
  15. 15.
    E. N. Antonov, I. V. Vakhrushev, S. A. Minaeva, and V. K. Popov, Perspekt. Mater., No. 6, 44 (2012).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • S. E. Bogorodski
    • 1
  • L. I. Krotova
    • 1
  • S. V. Kursakov
    • 2
  • S. A. Minaeva
    • 1
  • V. K. Popov
    • 1
  • V. I. Sevast’yanov
    • 2
  1. 1.Institute of Laser and Information TechnologiesRussian Academy of SciencesMoscowRussia
  2. 2.Shumakov Federal Research Center of Transplantology and Artificial OrgansMinistry of Health of the Russian FederationMoscowRussia

Personalised recommendations