Skip to main content
Log in

Mechanism of the thermal ignition of organic explosives by an electron beam

  • Combustion, Explosion, and Shock Waves
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A numerical simulation of the ignition of organic explosives (PETN, HMX, RDX, TATB) by an electron beam is performed. A criterion for the ignition of energetic materials with a melting point below the ignition temperature is obtained. The results of numerical calculations of the critical energy density of the electron beam are consistent with the criterion of ignition. The calculated critical energy density of PETN ignition is in good agreement with the available experimental data. The most sensitive HE is PETN, whereas the most heat-resistant is TATB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. P. Aduev, G. M. Belokurov, S. S. Grechin, and V. N. Shvaiko, Russ. Phys. J. 50, 99 (2007).

    Article  CAS  Google Scholar 

  2. V. I. Oleshko, V. M. Lisitsyn, A. S. Skripin, and V. P. Tsipilev, Tech. Phys. Lett. 38, 415 (2012).

    Article  CAS  Google Scholar 

  3. V. I. Oleshko, V. P. Tsipilev, V. V. Lysyk, et al., Izv. Vyssh. Uchebn. Zaved., Fiz. 55 (11/3), 158 (2012).

    Google Scholar 

  4. V. A. Morozov, G. G. Savenkov, V. A. Bragin, V. M. Kats, and A. A. Lukin, Tech. Phys. 57, 706 (2012).

    Article  CAS  Google Scholar 

  5. V. A. Morozov and G. G. Savenkov, Russ. J. Phys. Chem. B 7, 320 (2013).

    Article  CAS  Google Scholar 

  6. A. V. Khaneft, E. V. Duginov, and G. A. Ivanov, Khim. Fiz. Mezosk. 14, 28 (2012).

    CAS  Google Scholar 

  7. G. A. Ivanov and A. V. Khaneft, Khim. Fiz. Mezosk. 15, 523 (2013).

    CAS  Google Scholar 

  8. A. V. Khaneft and G. A. Ivanov, in Energetic Materials, Proceedings of the 43rd International Annual Conference (ICT, Karlsruhe, 2012), p. 17.

    Google Scholar 

  9. G. A. Ivanov and A. V. Khaneft, Russ. J. Phys. Chem. B 7, 765 (2013).

    Article  CAS  Google Scholar 

  10. G. Harbeke, Polycrystalline Semiconductors: Physical Properties and Applications: Proc. of the International School of Materials Science and Technology, Erice, 1984, (Springer, Berlin, 1985; Mir, Moscow, 1989).

    Google Scholar 

  11. S. Schiller, U. Heisig, and S. Panzer, Electron Beam Technology (Wiley, New York, 1982; Energiya, Moscow, 1980).

    Google Scholar 

  12. T. Tabata and R. Ito, Nucl. Sci. Eng. 53, 226 (1974).

    CAS  Google Scholar 

  13. L. P. Orlenko, Explosion Physics, (Fizmatlit, Moscow, 2002), Vol. 1 [in Russian].

    Google Scholar 

  14. W. L. Ng, J. E. Field, and H. M. Hauser, J. Appl. Phys. 59, 3945 (1986).

    Article  CAS  Google Scholar 

  15. A. V. Belyaev, V. K. Bobolev, A. I. Korotkov, A. A. Sulimov, and S. V. Chuiko, Transition of Condensed Systems Combustion into Explosion (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  16. A. A. Borisov, Detonation and Explosives, Collection of Articles, (Mir, Moscow, 1981) [in Russian].

    Google Scholar 

  17. F. A. Baum, A. S. Derzhavets, and N. N. Sanasaryan, Thermostable Explosives and Their Action in Deep Wells (Nedra, Moscow, 1969) [in Russian].

    Book  Google Scholar 

  18. R. Shall, in High Energy Density Physics, Ed. by P. Calderola and H. Knoepfel (Academic, New York, 1971; Mir, Moscow, 1974), p. 258.

  19. I. G. Assovskii, Combustion Physics and Inner Ballistics (Nauka, Moscow, 2005) [in Russian].

    Google Scholar 

  20. V. A. Strunin, L. I. Nikolaeva, and G. B. Manelis, Russ. J. Phys. Chem. B 4, 627 (2010).

    Article  Google Scholar 

  21. N. V. Garmasheva, V. P. Filin, I. V. Chemagina, et al., in Proceedings of the 7th Zababakhin’s Scientific Readings (VNIITF, Snezhinsk, 2003), p. 1.

    Google Scholar 

  22. K. P. Mishchenko and A. A. Ravdel Short Handbook of Physical Chemical Values, (Khimiya, Leningrad, 1974) [in Russian].

    Google Scholar 

  23. N. N. Kalitkin, Numerical Computation Methods (Nauka, Moscow, 1978) [in Russian].

    Google Scholar 

  24. A. V. Khaneft, Khim. Fiz. 17 (8), 132 (1998).

    Google Scholar 

  25. S. S. Batsanov, B. A. Demidov, and L. I. Rudakov, JETP Lett. 130, 575 (1979).

    Google Scholar 

  26. V. A. Morozov, Yu. V. Petrov, and G. G. Savenkov, Dokl. Phys. 157, 288 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Khaneft.

Additional information

Original Russian Text © G.A. Ivanov, A.V. Khaneft, 2015, published in Khimicheskaya Fizika, 2015, Vol. 34, No. 7, pp. 33–38.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanov, G.A., Khaneft, A.V. Mechanism of the thermal ignition of organic explosives by an electron beam. Russ. J. Phys. Chem. B 9, 625–630 (2015). https://doi.org/10.1134/S1990793115040077

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793115040077

Keywords

Navigation