Advertisement

Russian Journal of Physical Chemistry B

, Volume 8, Issue 8, pp 1042–1048 | Cite as

Structure and properties of ultra-high-molecular-weight polyethylene (UHMWPE) containing silver nanoparticles

  • P. S. Timashev
  • N. V. Minaev
  • D. V. Terekhin
  • E. V. Kuznetsov
  • V. V. Parfenov
  • V. V. Malinovskaya
  • V. N. Bagratashvili
  • O. P. Parenago
Article

Abstract

Ultra-high molecular weight polyethylene (UHMWPE) containing silver particles was obtained by impregnation with a silver-containing precursor in supercritical carbon dioxide and its microstructure and mechanical properties were studied. The Ag-containing UHMWPE samples showed a 40–50% increase (on the average) in the elasticity modulus according to a study by the nanoindentation method. The hardness of the material did not change during modification. The friction coefficients of the starting and modified samples were comparable over the whole range of loads from 50 to 400 N under study.

Keywords

supercritical carbon dioxide superhigh-molecular polyethylene organometal precursors modification nanoindentation tribological characteristics friction coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. Firdous, M. Fuzail, M. Atif, and M. Nawaz, Int. J. Light Electron. Opt. 122, 99 (2011).CrossRefGoogle Scholar
  2. 2.
    A. L. dos S. Alves, L. F. C. Nascimento, and J. C. M. Suarez, Polym. Test. 24, 104 (2005).CrossRefGoogle Scholar
  3. 3.
    S. Affatado and B. Fernandes, Biomaterials 22, 2325 (2001).CrossRefGoogle Scholar
  4. 4.
    V. K. Popov, V. N. Bagratashvili, A. P. Krasnov, et al., Tribol. Lett. 5, 297 (1998).CrossRefGoogle Scholar
  5. 5.
    G. E. Selyutin, Yu. Yu. Gavrilov, E. N. Voskresenskaya, V. A. Zakharov, V. E. Nikitin, and V. A. Poluboyarov, Khim. Interesah Ustoich. Razvit., No. 3, 375 (2010).Google Scholar
  6. 6.
    V. N. Polyakov and V. N. Bagratashvili, Ross. Khim. Zh. 43(2), 93 (1999).Google Scholar
  7. 7.
    L. A. Cooper, J. Mater. Chem. 10, 207 (2000).CrossRefGoogle Scholar
  8. 8.
    S. G. Kazarian, J. Polym. Sci., Ser. C 42, 78 (2000).Google Scholar
  9. 9.
    K. W. Webb and A. S. Teja, Fluid Phase Equilib. 158–160, 1029 (1999).CrossRefGoogle Scholar
  10. 10.
    J. J. Watkins and T. J. McCarty, Macromolecules 27, 4845 (1994); Macromolecules 28, 4067 (1995).CrossRefGoogle Scholar
  11. 11.
    A. P. Krasnov, V. A. Mit’, O. V. Afonicheva, E. E. Said-Galiev, A. Yu. Nikolaev, A. Yu. Vasil’kov, V. L. Podshibikhin, A. Yu. Naumkin, and I. O. Volkov, Vopr. Materialoved., No. 1, 161 (2009).Google Scholar
  12. 12.
    J. L. Ellis, J. C. Titone, D. L. Tomasko, N. Annabi, and F. Dehghani, J. Supercrit. Fluids 52, 235 (2010).CrossRefGoogle Scholar
  13. 13.
    T. I. Izaak, O. V. Babkina, I. N. Lapin, E. V. Leonova, O. V. Magaev, A. V. Danilov, A. S. Knyazev, O. V. Svetlichnyi, O. V. Vodyankina, G. M. Mokrousov, and N. S. Bogdanchikova, Nanotekhnika, No. 4, 34 (2006).Google Scholar
  14. 14.
    T. Hayakawa, S. T. Selvan, and M. Nogami, Appl. Phys. Lett. 74, 1513 (1999).CrossRefGoogle Scholar
  15. 15.
    V. V. Klimov, Nanoplasmonics, 2nd ed. (Fizmatlit, Moscow, 2010), p. 118 [in Russian].Google Scholar
  16. 16.
    V. K. Popov, V. N. Bagratashvili, L. I. Krotova, A. O. Rybaltovskii, D. S. Smith, P. S. Timashev, J. Yang, Y. S. Zavorotnii, and S. M. Howdle, Green Chem. 13, 2696 (2011).CrossRefGoogle Scholar
  17. 17.
    A. O. Rybaltovskii, Yu. S. Zavorotnyi, N. V. Minaev, M. I. Samoilovich, P. S. Timashev, M. Yu. Tsvetkov, and V. N. Bagratashvili, Sverkhkrit. Fluidy: Teor. Prakt. 4(2), 53 (2009).Google Scholar
  18. 18.
    V. V. Klimov, Nanoplasmonics (Fizmatlit, Moscow, 2009) [in Russian].Google Scholar
  19. 19.
    L. S. Villata, E. Wolcan, M. R. Feliz, and A. L. J. Capparelli, Photochem. Photobiol. A: Chem. 115, 185 (1998).CrossRefGoogle Scholar
  20. 20.
    G. Binning, C. Quate, and Ch. Gerber, Phys. Rev. Lett. 56, 930 (1986).CrossRefGoogle Scholar
  21. 21.
    Q. Zhong, D. Inniss, K. Kjoller, and V. B. Elings, Surf. Sci. Lett. 290, 688 (2003).Google Scholar
  22. 22.
    M. Abdul Samad and S. K. Sinha, Tribol. Int. 44, 1932 (2011).CrossRefGoogle Scholar
  23. 23.
    E. Ingham and J. Fisher, Biomaterials 26, 1271 (2005).CrossRefGoogle Scholar
  24. 24.
    A. Pusz and K. Michalik, Archiv. Mater. Sci. Eng. 28, 467 (2007).Google Scholar
  25. 25.
    Liu Yemei and S. K. Sinha, Wear (2013, in press).Google Scholar
  26. 26.
    E. A. Kolubaev, O. V. Sizova, and S. A. Pulynin, Izv. Tomsk. Politekh. Univ. 319(2), 62 (2011).Google Scholar
  27. 27.
    A. A. Pollock, Acoustic Emission Inspection, in Metals Handbook, 9th ed. (ASM International, 1989).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • P. S. Timashev
    • 1
    • 2
  • N. V. Minaev
    • 1
  • D. V. Terekhin
    • 3
  • E. V. Kuznetsov
    • 2
  • V. V. Parfenov
    • 4
  • V. V. Malinovskaya
    • 4
  • V. N. Bagratashvili
    • 1
  • O. P. Parenago
    • 3
  1. 1.Institute of Laser and Information TechnologiesRussian Academy of SciencesTroitsk (Moscow)Russia
  2. 2.Karpov Institute of Physical ChemistryMoscowRussia
  3. 3.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  4. 4.Gamaleya Institute of Epidemiology and MicrobiologyRussian Academy of Medical SciencesMoscowRussia

Personalised recommendations