Advertisement

Russian Journal of Physical Chemistry B

, Volume 8, Issue 8, pp 1009–1018 | Cite as

Thermohydrodynamics of supercritical fluids in the presence of temperature heterogeneities

Article

Abstract

Main regularities of heat gravitational convection are considered near the thermodynamic critical point. Special physical properties of supercritical fluids (strong increase of heat capacity at constant pressure and coefficients of heat extension and isothermal compressibility, convergence to zero of the coefficient of thermal diffusivity upon approximation to a critical point) lead to the features of convective flow and heat transfer. Hydrodynamic behavior of supercritical fluids is characterized by intensification of internal movement, decrease in the spatial scale of convection, formation of a piston effect, temporal multiresolution of dynamic and heat processes, and the effect of stratification.

Keywords

heat gravitational convection thermodynamic critical point adiabatic heating (piston effect) stratification adiabatic temperature gradient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Yu. Zalepugin, N. A. Til’kunova, I. V. Chernyshova, and V. S. Polyakov, Sverkhkrit. Fluidy: Teor. Prakt. 1(1), 27 (2006).Google Scholar
  2. 2.
    A. Z. Patashinskii and V. L. Pokrovskii, Fluctuation Theory of Phase Transitions (Nauka, Moscow, 1975) [in Russian].Google Scholar
  3. 3.
    M. A. Anisimov, The Critical Phenomena in Liquids and Liquid Crystals (Nauka, Moscow, 1987) [in Russian].Google Scholar
  4. 4.
    V. I. Polezhaev and E. B. Soboleva, Priroda (Moscow, Russ. Fed.), No. 10, 17 (2003).Google Scholar
  5. 5.
    V. M. Emel’yanov, A. A. Gorbunov, A. K. Lednev, and S. A. Nikitin, Sverkhkrit. Fluidy: Teor. Prakt. 4(2), 71 (2009).Google Scholar
  6. 6.
    A. V. Zyuzgin, A. I. Ivanov, V. I. Polezhaev, G. F. Putin, and E. B. Soboleva, Kosm. Issled. 39(2), 188 (2001).Google Scholar
  7. 7.
    V. I. Polezhaev and E. B. Soboleva, Izv. Akad. Nauk, Mekh. Zhidk. Gasa, No. 3, 70 (2000).Google Scholar
  8. 8.
    J. C. Dunn and H. C. Hardee, J. Volcanol. Geotherm. Res. 11, 189 (1981).CrossRefGoogle Scholar
  9. 9.
    N. V. Koronovskii, Soros. Obrazov. Zh., No. 10, 55 (1999).Google Scholar
  10. 10.
    E. B. Soboleva, Ann. N.Y. Acad. Sci. 1161, 117 (2009).CrossRefGoogle Scholar
  11. 11.
    V. I. Polezhaev and E. B. Soboleva, Izv. Akad. Nauk, Mekh. Zhidk. Gasa, No. 2, 48 (2005).Google Scholar
  12. 12.
    E. B. Soboleva, Eprint. Fluid Dynamics (2010). arXiv: 1001.4139v1 [physics.flu-dyn]Google Scholar
  13. 13.
    A. B. Kogan and H. Meyer, Phys. Rev. E 63, 056310 (2001).CrossRefGoogle Scholar
  14. 14.
    D. A. Nield and A. Beian, Convection in Porous Media (Springer, New York, 1992).CrossRefGoogle Scholar
  15. 15.
    E. B. Soboleva, Izv. Akad. Nauk, Mekh. Zhidk. Gasa, No. 2, 57 (2008).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.Ishlinskii Institute for Problems in MechanicsMoscowRussia

Personalised recommendations