Skip to main content
Log in

Global mechanism of methane autoignition: Approach and algorithm

  • Combustion, Explosion, and Shock Waves
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

An approach to constructing universal global mechanisms of methane autoignition is proposed. It is based on the requirement of obligatory reproduction of all the kinetic stages of the autoignition process and the types of their kinetics. It is shown that satisfying these requirements enables to construct global mechanisms of methane autoignition that are applicable in a wide range of initial conditions and adaptable to new problems. A global autoignition mechanism (10 species and reactions 9) is developed, as well as an extended global mechanism for describing plasma-induced methane autoignition (10 species, 10 reactions).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. I. Strelkova, I. A. Kirillov, B. V. Potapkin, et al., Combust. Sci. Tech. 180, 1788 (2008).

    Article  CAS  Google Scholar 

  2. H. J. Curran, W. J. Pitz, C. K. Westbrook, et al., Proc. Combust. Inst. 27, 379 (1998).

    Article  Google Scholar 

  3. C. H. Yang and B. F. Gray, J. Phys. Chem. 73, 3395 (1969).

    Article  CAS  Google Scholar 

  4. M. Short, A. K. Kapila, and J. J. Quirk, Phil. Trans. R. Soc. London A 357, 3621 (1999).

    Article  Google Scholar 

  5. L. Bédard-Tremblay, J. Melguizo-Gavilanes, and L. Bauwens, Proc. Combust. Inst. 32, 2339 (2009).

    Article  Google Scholar 

  6. G. Joulin, S. S. Ludford, N. Petersh, and C. Schmidt-Laine, SIAM J. Appl. Math. 45, 420 (1985).

    Article  Google Scholar 

  7. G. J. Sharpe, Phys. Fluids 14, 4372 (2002).

    Article  CAS  Google Scholar 

  8. Z. Liang, S. Browne, R. Deiterding, and J. E. Shepherd, Proc. Combust. Inst. 31, 2445 (2007).

    Article  Google Scholar 

  9. C. K. Westbrook and F. L. Dryer, Combust. Sci. Tech. 27, 31 (1981).

    Article  CAS  Google Scholar 

  10. W. P. Jones and R. P. Lindstedt, Combust. Flame 73, 233 (1988).

    Article  CAS  Google Scholar 

  11. V. Ya. Basevich and S. M. Frolov, Khim. Fiz. 25 (6), 54 (2006).

  12. J. Anderson, C. L. Rasmussen, T. Giselsson, and P. Glarbourg, Energy Fuels 23, 1379 (2009).

    Article  Google Scholar 

  13. J. Duterque, B. Roland, and T. Helene, Combust. Sci. Tech. 26, 1 (1981).

    Article  CAS  Google Scholar 

  14. J. P. Kim, U. Schnell, and G. Scheffknecht, Combust. Sci. Tech. 180, 565 (2008).

    Article  CAS  Google Scholar 

  15. B. Varatharajan, M. V. Petrova, F. A. Williams, and V. Tangirala, Proc. Combust. Inst. 30, 1869 (2005).

    Article  Google Scholar 

  16. V. V. Azatyan, Russ. Chem. Rev. 68, 1021 (1999).

    Article  CAS  Google Scholar 

  17. J. Huang and W. K. Bushe, Combust. Flame 144, 74 (2006).

    Article  CAS  Google Scholar 

  18. M. Deminsky, V. Chorkov, G. Belov, et al., Comput. Mater. Sci. 28, 169 (2003).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. A. Zaev.

Additional information

Original Russian Text © I.A. Zaev, I.V. Prokopovich, 2014, published in Khimicheskaya Fizika, 2014, Vol. 33, No. 8, pp. 3–11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zaev, I.A., Prokopovich, I.V. Global mechanism of methane autoignition: Approach and algorithm. Russ. J. Phys. Chem. B 8, 467–474 (2014). https://doi.org/10.1134/S1990793114040265

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793114040265

Keywords

Navigation