Russian Journal of Physical Chemistry B

, Volume 8, Issue 4, pp 467–474 | Cite as

Global mechanism of methane autoignition: Approach and algorithm

Combustion, Explosion, and Shock Waves
  • 54 Downloads

Abstract

An approach to constructing universal global mechanisms of methane autoignition is proposed. It is based on the requirement of obligatory reproduction of all the kinetic stages of the autoignition process and the types of their kinetics. It is shown that satisfying these requirements enables to construct global mechanisms of methane autoignition that are applicable in a wide range of initial conditions and adaptable to new problems. A global autoignition mechanism (10 species and reactions 9) is developed, as well as an extended global mechanism for describing plasma-induced methane autoignition (10 species, 10 reactions).

Keywords

global kinetic mechanism ignition methane plasma-induced combustion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. I. Strelkova, I. A. Kirillov, B. V. Potapkin, et al., Combust. Sci. Tech. 180, 1788 (2008).CrossRefGoogle Scholar
  2. 2.
    H. J. Curran, W. J. Pitz, C. K. Westbrook, et al., Proc. Combust. Inst. 27, 379 (1998).CrossRefGoogle Scholar
  3. 3.
    C. H. Yang and B. F. Gray, J. Phys. Chem. 73, 3395 (1969).CrossRefGoogle Scholar
  4. 4.
    M. Short, A. K. Kapila, and J. J. Quirk, Phil. Trans. R. Soc. London A 357, 3621 (1999).CrossRefGoogle Scholar
  5. 5.
    L. Bédard-Tremblay, J. Melguizo-Gavilanes, and L. Bauwens, Proc. Combust. Inst. 32, 2339 (2009).CrossRefGoogle Scholar
  6. 6.
    G. Joulin, S. S. Ludford, N. Petersh, and C. Schmidt-Laine, SIAM J. Appl. Math. 45, 420 (1985).CrossRefGoogle Scholar
  7. 7.
    G. J. Sharpe, Phys. Fluids 14, 4372 (2002).CrossRefGoogle Scholar
  8. 8.
    Z. Liang, S. Browne, R. Deiterding, and J. E. Shepherd, Proc. Combust. Inst. 31, 2445 (2007).CrossRefGoogle Scholar
  9. 9.
    C. K. Westbrook and F. L. Dryer, Combust. Sci. Tech. 27, 31 (1981).CrossRefGoogle Scholar
  10. 10.
    W. P. Jones and R. P. Lindstedt, Combust. Flame 73, 233 (1988).CrossRefGoogle Scholar
  11. 11.
    V. Ya. Basevich and S. M. Frolov, Khim. Fiz. 25 (6), 54 (2006).Google Scholar
  12. 12.
    J. Anderson, C. L. Rasmussen, T. Giselsson, and P. Glarbourg, Energy Fuels 23, 1379 (2009).CrossRefGoogle Scholar
  13. 13.
    J. Duterque, B. Roland, and T. Helene, Combust. Sci. Tech. 26, 1 (1981).CrossRefGoogle Scholar
  14. 14.
    J. P. Kim, U. Schnell, and G. Scheffknecht, Combust. Sci. Tech. 180, 565 (2008).CrossRefGoogle Scholar
  15. 15.
    B. Varatharajan, M. V. Petrova, F. A. Williams, and V. Tangirala, Proc. Combust. Inst. 30, 1869 (2005).CrossRefGoogle Scholar
  16. 16.
    V. V. Azatyan, Russ. Chem. Rev. 68, 1021 (1999).CrossRefGoogle Scholar
  17. 17.
    J. Huang and W. K. Bushe, Combust. Flame 144, 74 (2006).CrossRefGoogle Scholar
  18. 18.
    M. Deminsky, V. Chorkov, G. Belov, et al., Comput. Mater. Sci. 28, 169 (2003).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.OOO Kintech LabMoscowRussia

Personalised recommendations