Skip to main content
Log in

Ionization of diatomic molecules by electron impact

  • Elementary Physicochemical Processes
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

An analytical expression for the amplitude of ionization of the hydrogen molecule by electron impact in the first Born approximation with a one-center Coulomb continuum wave function is derived. The case where the incident electron energy is much greater than the ejected electron energy is considered. The molecular wave functions were constructed in the approximation of linear combination of atomic orbitals with overlapping configurations. The role of the orthogonalization of the initial and final wave functions of the active electron of the target is elucidated. The triple differential ionization cross sections for the different orientations of the molecular axis and that averaged over all orientations are calculated. The secondary electron angular distribution is represented in the form of three-dimensional images. A comparison with the results of other theoretical calculations and experimental data is performed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. S. W. Massey and C. B. O. Mohr, Proc. R. Soc. London A 140, 613 (1933).

    Article  CAS  Google Scholar 

  2. S. Dey, I. E. McCarthy, P. J. O. Teubner, et al., Phys. Rev. Lett. 34, 782 (1975).

    Article  CAS  Google Scholar 

  3. S. Geltman and M. B. Hidalgo, J. Phys. B: At. Mol. Opt. Phys. 7, 831 (1974).

    Article  CAS  Google Scholar 

  4. R. W. Zurales and R. R. Lucchese, Phys. Rev. A 37, 1176 (1988).

    Article  CAS  Google Scholar 

  5. P. F. Weck, O. A. Fojon, B. Joulakian, et al., Phys. Rev. A 66, 012711 (2002).

    Article  Google Scholar 

  6. P. Weck, O. A. Fojon, J. Hanssen, et al., Phys. Rev. A 63, 042709 (2001).

    Article  Google Scholar 

  7. K. Jung, E. Schubert, D. A. L. Paul, et al., J. Phys. B: At. Mol. Opt. Phys. 8, 1330 (1975).

    Article  CAS  Google Scholar 

  8. E. M. S. Casagrande, A. Naja, F. Mezdari, et al., J. Phys. B: At. Mol. Opt. Phys. 41, 025204 (2008).

    Article  Google Scholar 

  9. M. Cherid, A. Lahmam-Bennani, R. W. Zurales, et al., J. Phys. B: At. Mol. Opt. Phys. 22, 3483 (1989).

    Article  CAS  Google Scholar 

  10. K. Omidvar, H. L. Kyle, and E. C. Sullivan, Phys. Rev. A 5, 1174 (1972).

    Article  Google Scholar 

  11. C. Champion, J. Hanssen, and P. A. Hervieux, Phys. Rev. A 63, 052720 (2001).

    Article  Google Scholar 

  12. C. Champion, J. Hanssen, and P. A. Hervieux, Phys. Rev. A 65, 022710 (2002).

    Article  Google Scholar 

  13. J. F. Gao, D. H. Madison, and J. L. Peacher, Phys. Rev. A 72, 020701 (2005).

    Article  Google Scholar 

  14. J. F. Gao, D. H. Madison, and J. L. Peacher, J. Chem. Phys. 123, 204314 (2005).

    Article  Google Scholar 

  15. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Fizmatlit, Moscow, 2004; Pergamon, New York, 1977).

    Google Scholar 

  16. S. Weinbaum, J. Chem. Phys. 1, 593 (1933).

    Article  CAS  Google Scholar 

  17. A. A. Radtsig and B. M. Smirnov, Handbook of Atomic and Molecular Physics (Moscow, Atomizdat, 1980), p. 177 [in Russian].

    Google Scholar 

  18. H. Eyring, J. Walter, and G. E. Kimball, Quantum Chemistry (Wiley, London, New York, 1944; Inostr. Liter., Moscow, 1948), p. 159.

    Google Scholar 

  19. B. N. Finkelstein and G. E. Horowitz, Z. Phys. 48, 118 (1928).

    Article  CAS  Google Scholar 

  20. G. Bateman and A. Erdelyi, Higher Transcendental Functions (McGraw-Hill, New York, 1953; Nauka, Moscow, 1969), Vol. 1.

    Google Scholar 

  21. G. Bateman and A. Erdelyi, Tables of Integral Transforms (McGraw-Hill, New York, 1954; Nauka, Moscow, 1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Yu. Yurova.

Additional information

Original Russian Text © I.Yu. Yurova, N.K. Shevyakina, 2014, published in Khimicheskaya Fizika, 2014, Vol. 33, No. 2, pp. 5–13.

This article was presented as a paper at the III International Conference “Atmosphere, Ionosphere, Safety (AIS-2012).”

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yurova, I.Y., Shevyakina, N.K. Ionization of diatomic molecules by electron impact. Russ. J. Phys. Chem. B 8, 1–8 (2014). https://doi.org/10.1134/S1990793114010163

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793114010163

Keywords

Navigation