Russian Journal of Physical Chemistry B

, Volume 7, Issue 5, pp 620–631 | Cite as

Simulation of the electric field in Earth’s ionosphere during a geomagnetic storm

  • V. V. Klimenko
  • R. Yu. Luk’yanova
  • M. V. Klimenko
Chemical Physics of Atmospheric Phenomena


Previously, a global self-consistent model of the thermosphere, ionosphere, and protonosphere (GSM TIP) was used to study the ionospheric effects of geomagnetic storms in 2005, 2006, 2010, and 2011. In these studies, the input parameters of the model were specified using different dependences of variations of the potential difference across the polar caps and of the spatial distribution of Region 2 field-aligned currents during geomagnetic storms on the geomagnetic activity indices, solar wind parameters, and interplanetary magnetic field parameters. In the present work, we have tried to examine how correct was the choice of these relationships and how faithful are the obtained global distributions of the electric field in the ionosphere. For this, we present the results of a comparative analysis of the electric field in the ionosphere during geomagnetic storms of May 2–3, 2010, obtained using two models (GSM TIP and LC06) based on different approaches to solving this problem.


ionosphere geomagnetic storm electric field field-aligned currents numerical simulations 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Gurevich, A. L. Krylov, and E. E. Tsedilina, Space Sci. Rev. 19, 59 (1976).CrossRefGoogle Scholar
  2. 2.
    A. D. Richmond, in Aeronomy of the Earth’s Atmosphere and Ionosphere, Ed. by M. A. Abdu and D. Pancheva, IAGA Special Sopron Book Series (Springer, 2011), Vol. 2, p. 191. doi: 10.1007/978-94-007-0326-1-13Google Scholar
  3. 3.
    V. M. Vasyliunas, in Particles and Fields in the Magnetosphere, Ed. by B. M. McCormac (Reidel, Dordrecht, 1970), p. 60.Google Scholar
  4. 4.
    V. V. Denisenko, N. V. Erkaev, A. V. Kitaev, and I. T. Matveenkov, Mathematical Simulation of Magnetospheric Processes (Nauka, Novosibirsk, 1992) [in Russian].Google Scholar
  5. 5.
    F. R. Toffoletto, S. Sazykin, R. W. Spiro, R. A. Wolf, and J. G. Lyon, J. Atmos. Solar-Terr. Phys. 66, 1361 (2004).CrossRefGoogle Scholar
  6. 6.
    G. Alfvén and G. G. Felthammar, Cosmical Electrodynamics (Clarendon, Oxford. 1963; Mir, Moscow, 1967).Google Scholar
  7. 7.
    M. Harel, R. A. Wolf, P. H. Reiff, and R. W. Spiro, J. Geophys. Res. A86, 2217 (1981).CrossRefGoogle Scholar
  8. 8.
    A. D. Richmond, J. Geomagn. Geoelectr. 31, 287 (1979).CrossRefGoogle Scholar
  9. 9.
    J. Du and R. J. Stening, J. Atmos. Solar-Terr. Phys. 61, 925 (1999).CrossRefGoogle Scholar
  10. 10.
    V. B. Lyatskii, Current Systems of Magnetospheric-Ionospheric Perturbations (Nauka, Leningrad, 1978) [in Russian].Google Scholar
  11. 11.
    R. A. Wolf and R. K. Jaggi, Comments Astrophys. Space Phys. 5(4), 99 (1973).Google Scholar
  12. 12.
    N. Maruyama, A. D. Richmond, T. J. Fuller-Rowell, et al., Geophys. Res. Lett. 32(17) (2005). doi: 10.1029/2005GL023763Google Scholar
  13. 13.
    T. Kikuchi, Y. Ebihara, K. K. Hashimoto, et al., J. Geophys. Res. 115, A05209 (2010). doi: 10.1029/2008JA013948CrossRefGoogle Scholar
  14. 14.
    R. A. Wolf, R. W. Spiro, S. Sazykin, and F. R. Toffoletto, J. Atmos. Solar-Terr. Phys. 69, 288 (2007).CrossRefGoogle Scholar
  15. 15.
    H. G. Mayr and H. Volland, J. Geophys. Res. 78, 2251 (1973).CrossRefGoogle Scholar
  16. 16.
    A. D. Richmond and S. Matsushita, J. Geophys. Res. 80, 2839 (1975).CrossRefGoogle Scholar
  17. 17.
    M. Blanc and A. D. Richmond, J. Geophys. Res. 85, 1669 (1980).CrossRefGoogle Scholar
  18. 18.
    M. V. Klimenko and V. V. Klimenko, J. Atmos. Solar-Terr. Phys. 90–91, 146 (2012). doi: 10.1016/j.jastp.2012.02.018CrossRefGoogle Scholar
  19. 19.
    A. A. Namgaladze, Yu. N. Korenkov, V. V. Klimenko, et al., Pure Appl. Geophys. (PAGEOPH) 127, 219 (1988).CrossRefGoogle Scholar
  20. 20.
    A. A. Namgaladze, Yu. N. Korenkov, V. V. Klimenko, et al., Geomagn. Aeron. 30, 612 (1990).Google Scholar
  21. 21.
    Yu. N. Korenkov, V. V. Klimenko, M. Foerster, F. S. Bessarab, V. A. Surotkin, J. Geophys. Res. 103(A7), 14697 (1998). doi: 10.1029/98JA00210CrossRefGoogle Scholar
  22. 22.
    M. V. Klimenko and V. V. Klimenko, Izv. KGTU, No. 16, 220 (2009).Google Scholar
  23. 23.
    M. V. Klimenko, V. V. Klimenko, K. G. Ratovskii, and L. P. Goncharenko, Geomagn. Aeron. 51, 364 (2011).CrossRefGoogle Scholar
  24. 24.
    M. V. Klimenko, V. V. Klimenko, K. G. Ratovskii, and L. P. Goncharenko, Russ. J. Phys. Chem. B 5, 377 (2011).CrossRefGoogle Scholar
  25. 25.
    M. V. Klimenko, V. V. Klimenko, N. A. Korenkova, et al., in Proceedings of the 35th Annual Seminar on Physics of Auroral Phenomena (PGI KSC RAS, Apatity, 2012), p. 111.Google Scholar
  26. 26.
    R. Lukianova and F. Christiansen, J. Geophys. Res. 111, A03213 (2006). doi: 10.1029/2005JA011465CrossRefGoogle Scholar
  27. 27.
    F. Christiansen, V. O. Papitashvili, and T. Neubert, J. Geophys. Res. 107(A2) (2002). doi: 10.1029/2001JA900104Google Scholar
  28. 28.
    V. O. Papitashvili, F. Christiansen, and T. Neubert, Geophys. Rev. Lett. 29, 1683 (2002). doi: 10.1029/2001GL014207CrossRefGoogle Scholar
  29. 29.
    V. V. Klimenko, M. V. Klimenko, and V. V. Bryukhanov, Mat. Model. 18(3), 77 (2006).Google Scholar
  30. 30.
    M. V. Klimenko, V. V. Klimenko, and V. V. Bryukhanov, Geomagn. Aeron. 46, 457 (2006).CrossRefGoogle Scholar
  31. 31.
    Y. Zhang and L. J. Paxton, J. Atmos. Solar-Terr. Phys. 70, 1231 (2008).CrossRefGoogle Scholar
  32. 32.
    E. Yu. Feshchenko and Yu. P. Maltsev, in Proceedings of the 26th Annual Seminar on Physics of Auroral Phenomena (PGI KSC RAS, Apatity, 2003), p. 59.Google Scholar
  33. 33.
    C. B. Boyle, P. H. Reiff, and M. R. Hairston, J. Geophys. Res. 102(A1), 111 (1997). doi: 10.1029/96JA01742CrossRefGoogle Scholar
  34. 34.
    M. V. Klimenko, V. V. Klimenko, and V. V. Bryukhanov, Adv. Radio Sci. 5, 385 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • V. V. Klimenko
    • 1
  • R. Yu. Luk’yanova
    • 2
    • 3
  • M. V. Klimenko
    • 1
  1. 1.Western Department of Pushkov Institute of Terrestrial Magnetism, Ionosphere, and Radio Waves PropagationRussian Academy of SciencesKaliningradRussia
  2. 2.Arctic and Antarctic Research InstituteSt. PetersburgRussia
  3. 3.Space Research InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations