Russian Journal of Physical Chemistry B

, Volume 6, Issue 2, pp 218–223 | Cite as

The coulomb glory effect in collisions of antiprotons with heavy ions

  • A. V. Maiorova
  • D. A. Tel’nov
  • V. M. Shabaev
  • V. A. Zaitsev
  • I. I. Tupitsyn
  • G. Plunien
  • T. Stöhlker
Elementary Physicochemical Processes


The Coulomb glory effect in the back scattering of antiprotons with energies of from 100 eV to 3 keV from a bare nucleus of uranium and from uranium ions with closed shells is considered in terms of nonrelativistic and relativistic quantum theory. The appearance of Coulomb glory in collisions with multiply charged ions is caused by nucleus charge screening by filled electron shells. In scattering from a bare nucleus, the effect appears because of the screening properties of the vacuum polarization potential.


theory of collisions scattering of antiprotons Coulomb glory 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yu. N. Demkov, V. N. Ostrovskii, and D. A. Tel’nov, Sov. Phys. JETP 59, 257 (1984).Google Scholar
  2. 2.
    Yu. N. Demkov and V. N. Ostrovsky, J. Phys. B 34, L595 (2001).CrossRefGoogle Scholar
  3. 3.
    A. V. Maiorova, D. A. Telnov, V. M. Shabaev, I. I. Tupitsyn, G. Plunien, and T. Stöhlker, Phys. Rev. A 76, 032709 (2007).CrossRefGoogle Scholar
  4. 4.
    A. V. Maiorova, D. A. Telnov, V. M. Shabaev, G. Plunien, and T. Stöhlker, J. Phys. B 41, 245203 (2008).CrossRefGoogle Scholar
  5. 5.
    A. V. Maiorova, D. A. Telnov, V. M. Shabaev, V. A. Zaytsev, G. Plunien, and T. Stöhlker, J. Phys. B 43, 205006 (2010).CrossRefGoogle Scholar
  6. 6.
    P. M. Morse and W. P. Allis, Phys. Rev. 44, 269 (1933).CrossRefGoogle Scholar
  7. 7.
    G. F. Drukarev, Zh. Eksp. Teor. Fiz. 19, 247 (1949).Google Scholar
  8. 8.
    V. V. Babikov, Method of Phase Functions in Quantum Mechanics (Nauka, Moscow, 1976) [in Russian].Google Scholar
  9. 9.
    F. Calogero, Variable Phase Approach to Potential Scattering (Academic, New York, 1967).Google Scholar
  10. 10.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989, 4th ed.; Pergamon, New York, 1977, 3rd ed.).Google Scholar
  11. 11.
    V. M. Shabaev, Phys. Rep. 356, 119 (2002).CrossRefGoogle Scholar
  12. 12.
    P. J. Mohr, G. Plunien, and G. Soff, Phys. Rep. 293, 227 (1998).CrossRefGoogle Scholar
  13. 13.
    E. H. Wichmann and N. M. Kroll, Phys. Rev. 101, 843 (1956).CrossRefGoogle Scholar
  14. 14.
    A. I. Mil’shtein and I. S. Terekhov, J. Exp. Theor. Phys. 98, 687 (2004).CrossRefGoogle Scholar
  15. 15.
    V. B. Berestetskii, E. M. Lifshitz, and L. P. Pitaevskii, Course of Theoretical Physics, Vol. 4: Quantum Electrodynamics (Nauka, Moscow, 1989; Pergamon, Oxford, 1982).Google Scholar
  16. 16.
    N. F. Mott, Proc. R. Soc. London 135, 429 (1932).CrossRefGoogle Scholar
  17. 17.
    G. F. Drukarev and N. B. Berezina, Sov. Phys. JETP 42, 423 (1975).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • A. V. Maiorova
    • 1
  • D. A. Tel’nov
    • 1
  • V. M. Shabaev
    • 1
  • V. A. Zaitsev
    • 1
  • I. I. Tupitsyn
    • 1
  • G. Plunien
    • 2
  • T. Stöhlker
    • 3
    • 4
  1. 1.St. Petersburg State UniversitySt. PetersburgRussia
  2. 2.Institut für Teoretische PhysikTechnische Universit@atDresdenGermany
  3. 3.Gesellschaft für SchwerionenforschungDarmstadtGermany
  4. 4.Physikalisches Institut, PhilosophenwegHeidelbergGermany

Personalised recommendations