Skip to main content
Log in

Thermoactivated molecular motions in solids and determination of the energy of their activation by NQR spectroscopy methods

  • Structure of Chemical Compounds. Spectroscopy
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

The activation energy of thermoactivated molecular motions in solids is determined by examining the influence of these motions on the temperature dependence of the nuclear quadrupole spin-lattice relaxation rate and quadrupole resonance (NQR) signal intensity for chlorine-35. In the latter case, the heating of the crystals is accompanied by the fading of resonance signals, which is analyzed using a linear correlation between the activation energy of this motion and the fade-out temperature. The correlation parameters are demonstrated to be dependant on the type of molecular motion. The relaxation method is shown to be more effective in studying molecular motion and evaluating its activation energy as compared to the NQR signal fading technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ya. I. Frenkel’, Kinetic Theory of Liquids (Nauka, Leningrad, 1975) [in Russian].

    Google Scholar 

  2. H. S. Gutowsky, G. E. Pake, and R. Bersohn, J. Chem. Phys. 22, 643 (1954).

    Article  CAS  Google Scholar 

  3. N. L. Owen, Restricted Rotation in Molecules, Sci. Program, Oxford (1967), vol. 55 (219), p. 453.

    Google Scholar 

  4. Dzh. S. Uo and E. I. Fedin, Sov. Phys. Solid State 4, 1633 (1962).

    Google Scholar 

  5. H. Chihara and N. Nakamura, in Advances in Nuclear Quadrupole Resonance, Ed. by J. A. S. Smith (Heyden, London, 1980), vol. 4, p. 1.

    Google Scholar 

  6. Y. Ayant, M. Buyle-Bodin, and F. Lurcat, Compt. Rend. Acad. Sci. 237, 1511 (1953).

    CAS  Google Scholar 

  7. S. P. Gabuda and A. G. Lundin, Internal Mobility in Solids (Nauka, Novosibirsk, 1986) [in Russian].

    Google Scholar 

  8. G. B. Soifer, Russ. J. Phys. Chem. A 84, 960 (2010).

    Article  CAS  Google Scholar 

  9. H. S. Gutowsky and G. E. Pake, J. Chem. Phys. 18, 162 (1950).

    Article  CAS  Google Scholar 

  10. T. P. Das, J. Chem. Phys. 27, 763 (1957).

    Article  CAS  Google Scholar 

  11. A. I. Kitaigorodskii, Molecular Crystals (Nauka, Moscow, 1971) [in Russian].

    Google Scholar 

  12. I. A. Kyuntsel’ and V. A. Mokeeva, Vestn. Perm. Univ., Fiz., No. 1(6), 79 (2007).

  13. I. A. Kyuntsel’ and V. A. Mokeeva, Russ. J. Coord. Chem. 34, 14 (2008).

    Article  Google Scholar 

  14. I. A. Kyuntsel’ and V. A. Mokeeva, Vestn. Perm. Univ., Fiz., No. 1(38), 79 (2010).

  15. H. Bayer, Z. Phys. 130, 227 (1951).

    Article  CAS  Google Scholar 

  16. I. V. Ismestiev and G. B. Soifer, in Magnetic Resonance and Related Phenomena, Proceedings of the 16th Congress AMPERE (Bucharest, Romania, 1971), p. 648.

    Google Scholar 

  17. N. E. Ainbinder, I. A. Kyuntsel’, G. B. Soifer, and I. G. Shaposhnikov, in Problems of Magnetic Resonance (Nauka, Moscow, 1978), p. 348 [in Russian].

    Google Scholar 

  18. G. B. Soifer, in Radiospectroscop, Intervuz. Collection of Scientific Works (Perm. Univ., Perm, 1989), p. 117 [in Russian].

    Google Scholar 

  19. A. D. Gordeev, A. N. Osipenko, and G. B. Soifer, Zh. Strukt. Khim. 41, 737 (2000).

    Google Scholar 

  20. I. A. Kyuntsel’, Vestn. Perm. Univ., Fiz., No. 1, 60 (2003).

  21. Yu. N. Gachegov, A. D. Gordeev, and G. B. Soifer, Zh. Fiz. Khim. 59, 912 (1985).

    CAS  Google Scholar 

  22. D. E. Woessner and H. S. Gutowsky, J. Chem. Phys. 39, 440 (1963).

    Article  CAS  Google Scholar 

  23. Yu. N. Gachegov, A. D. Gordeev, and G. B. Soifer, Zh. Fiz. Khim. 53, 2366 (1979).

    CAS  Google Scholar 

  24. M. Buyle-Bodin, Arch. Sci. 12 (Fasc. Spec.), 166 (1959).

    Google Scholar 

  25. I. A. Kyuntsel’ and V. A. Mokeeva, Russ. J. Phys. Chem. A 81, 929 (2007).

    Article  Google Scholar 

  26. G. B. Soifer, Vestn. Perm. Univ., Fiz., No. 1(38), 85 (2010).

  27. N. E. Ainbinder, B. F. Amirkhanov, I. V. Izmest’ev, A. N. Osipenko, and G. B. Soifer, Sov. Phys. Solid State 13, 344 (1971).

    Google Scholar 

  28. I. A. Kyuntsel’, V. A. Mokeeva, and G. B. Soifer, Zh. Org. Khim. 64, 1459 (1994).

    Google Scholar 

  29. I. A. Kyuntsel, V. A. Mokeeva, and G. B. Soifer, J. Mol. Struct 345, 49 (1995).

    Article  CAS  Google Scholar 

  30. S. Wigand, T. Asaji, R. Ikeda, and D. Nakamura, Z. Naturforsch. A 47, 265 (1992).

    CAS  Google Scholar 

  31. N. E. Ainbinder, A. N. Osipenko, and G. B. Soifer, Khim. Fiz. 17(4), 30 (1998).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Soifer.

Additional information

Original Russian Text © G.B. Soifer, 2011, published in Khimicheskaya Fizika, 2011, Vol. 30, No. 9, pp. 21–26.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soifer, G.B. Thermoactivated molecular motions in solids and determination of the energy of their activation by NQR spectroscopy methods. Russ. J. Phys. Chem. B 5, 765–769 (2011). https://doi.org/10.1134/S1990793111090120

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793111090120

Keywords

Navigation