Skip to main content
Log in

Mechanism of the oxidation and combustion of normal paraffin hydrocarbons: Transition from C1–C6 to C7H16

  • Combustion, Explosion, and Shock Waves
  • Published:
Russian Journal of Physical Chemistry B Aims and scope Submit manuscript

Abstract

A previously proposed algorithm for constructing an optimal mechanism of the high- and low-temperature oxidation and combustion of normal paraffin hydrocarbons was used, which includes the major processes that determine the rate of reaction and the formation of the main intermediate and final products. The mechanism has the status of a nonempirical detailed mechanism, since all the constituent elementary reactions have a kinetic substantiation. The mechanism has two specific features: it included no reactions of so-called double addition of oxygen and no isomeric compounds and derivatives thereof as intermediate species. Realization of this algorithm leads to fairly compact models, a circumstance important for studies of chemical processes involving paraffin hydrocarbons C n with large n. Previously, based on this algorithm, compact mechanisms of oxidation and combustion of propane, n-butane, n-pentane, and n-hexane were constructed. In this paper, we develop a nonempirical detailed mechanism of oxidation and combustion of n-heptane. The most important feature of the new mechanism is its ability to predict the staging of the process in the form of cool and blue flames at low autoignition temperatures. A comparison of the simulation results with the available experimental data is conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. Chevalier, P. Louessard, U. C. Muller, and J. Warnatz, in Proc. Joint Meeting of Sov. Ital. Sections Comb. Inst. (Combustion Inst., Pisa, 1990), p. 5.

    Google Scholar 

  2. F. Buda, R. Bounaceur, et al., Combust. Flame 142, 170 (2005).

    Article  CAS  Google Scholar 

  3. A. S. Sokolik, Self-Ignition, Flame, and Detonation in Gases (Akad. Nauk SSSR, Moscow, 1960) [in Russian].

    Google Scholar 

  4. A. S. Sokolik and S. A. Yantovskii, Zh. Fiz. Khim. 20, 13 (1946).

    Google Scholar 

  5. V. Ya. Basevich and S. M. Frolov, Usp. Khim. 76, 927 (2007).

    Google Scholar 

  6. V. Ya. Basevich, V. I. Vedeneev, S. M. Frolov, and L. B. Romanovich, Khim. Fiz. 25(11), 87 (2006).

    Google Scholar 

  7. V. Ya. Basevich, A. A. Belyaev, and S. M. Frolov, Khim. Fiz. 26(7), 37 (2007) [Russ. J. Phys. Chem. B 1, 493 (2007)].

    CAS  Google Scholar 

  8. V. Ya. Basevich, A. A. Belyaev, and S. M. Frolov, Khim. Fiz. 28(8), 59 (2009) [Russ. J. Phys. Chem. B 3, 629 (2009)].

    CAS  Google Scholar 

  9. V. Ya. Basevich, A. A. Belyaev, and S. M. Frolov, Khim. Fiz. 29(7), 71 (2010) [Russ. J. Phys. Chem. B 4, 694 (2010)].

    CAS  Google Scholar 

  10. H. J. Curran, P. Gaffuri, W. J. Pitz, and C. K. Westbrook, Combust. Flame 114, 149 (1998).

    Article  CAS  Google Scholar 

  11. M. Chaos, A. Kazakov, Z. Zhao, and F. I. Dryer, Int. J. Chem. Kinet. 39, 399 (2007).

    Article  CAS  Google Scholar 

  12. H. Rogener, Z. Elektrochem. Angew. Phys. Chem. 53, 389 (1949).

    CAS  Google Scholar 

  13. C. F. Taylor, E. S. Taylor, J. S. Livengood, et al., SAE Quart. Trans. 4, 232 (1950).

    CAS  Google Scholar 

  14. H. Ciezki and G. Adomeit, in Proc. 16th Intern. Symp. on Shock Tubes and Waves (Niagara Falls, 1987), p. 481.

  15. Ch. Poppe, M. Schreber, and J. F. Griffith, in Proc. Joint Meeting British and German Sections of The Combustion Institute (Cambridge, 1993), p. 1993.

  16. H. Ciezki and G. Adomeit, Combust. Flame 93, 421 (1993).

    Article  CAS  Google Scholar 

  17. R. Minetti, M. Carlier, M. Ribaucour, et al., Combust. Flame 102, 298 (1995).

    Article  CAS  Google Scholar 

  18. B. M. Gauthier, D. F. Davidson, and R. K. Hanson, Combust. Flame 139, 300 (2004).

    Article  CAS  Google Scholar 

  19. V. Ya. Basevich, V. I. Vedeneev, S. M. Frolov, and L. B. Romanovich, Khim. Fiz. 23(1), 50 (2004).

    CAS  Google Scholar 

  20. H. Machrafi and S. Cavadias, Combust. Flame 155, 557 (2008).

    Article  CAS  Google Scholar 

  21. A. A. Belyaev and V. S. Posvyanskii, in Algorithms and Programs, Inform. Byull. Gos. Fonda Algoritmov Programm SSSR (1985), No. 3, p. 35.

  22. M. Gerstein, O. Levin, and E. L. Wang, JACS 73, 418 (1951).

    Article  CAS  Google Scholar 

  23. G. J. Gibbs and H. F. Calcote, J. Chem. Eng. Data 4, 226 (1959).

    Article  CAS  Google Scholar 

  24. S. G. Davis and C. K. Law, Proc. Combust. Inst. 27, 521 (1998).

    Google Scholar 

  25. Y. Hyang, C. J. Sung, and J. A. Eng, Combust. Flame 139, 239 (2004).

    Article  Google Scholar 

  26. S. M. Frolov, V. S. Posvyanskii, V. Ya. Basevich, et al., Khim. Fiz. 23(4), 75 (2004).

    CAS  Google Scholar 

  27. S. M. Frolov, V. Ya. Basevich, A. A. Belyaev, V. S. Posvyanskii, and V. A. Smetanyuk, in Combustion and Pollution: Environmental Impact, Ed. by G. D. Roy, S. M. Frolov, and A. M. Starik (Torus, Moscow, 2005), p. 117 [in Russian].

    Google Scholar 

  28. M. Takei, H. Kobayashi, and T. Niioka, Int. J. Micrograv. Res. Appl. Micrograv. Sci. Technol. 6(3), 184 (1993).

    CAS  Google Scholar 

  29. T. Niioka, H. Kobayashi, and D. Mito, in Proc. IVTAM Symp. on Mechanics and Combustion of Droplet and Sprays (Tainan, 1994), p. 367.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Basevich.

Additional information

Original Russian Text © V.Ya. Basevich, A.A. Belyaev, V.S. Posvyanskii, S.M. Frolov, 2010, published in Khimicheskaya Fizika, 2010, Vol. 29, No. 12, pp. 40–49.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Basevich, V.Y., Belyaev, A.A., Posvyanskii, V.S. et al. Mechanism of the oxidation and combustion of normal paraffin hydrocarbons: Transition from C1–C6 to C7H16 . Russ. J. Phys. Chem. B 4, 985–994 (2010). https://doi.org/10.1134/S1990793110060175

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990793110060175

Keywords

Navigation