Russian Journal of Physical Chemistry B

, Volume 4, Issue 6, pp 985–994 | Cite as

Mechanism of the oxidation and combustion of normal paraffin hydrocarbons: Transition from C1–C6 to C7H16

  • V. Ya. Basevich
  • A. A. Belyaev
  • V. S. Posvyanskii
  • S. M. Frolov
Combustion, Explosion, and Shock Waves


A previously proposed algorithm for constructing an optimal mechanism of the high- and low-temperature oxidation and combustion of normal paraffin hydrocarbons was used, which includes the major processes that determine the rate of reaction and the formation of the main intermediate and final products. The mechanism has the status of a nonempirical detailed mechanism, since all the constituent elementary reactions have a kinetic substantiation. The mechanism has two specific features: it included no reactions of so-called double addition of oxygen and no isomeric compounds and derivatives thereof as intermediate species. Realization of this algorithm leads to fairly compact models, a circumstance important for studies of chemical processes involving paraffin hydrocarbons C n with large n. Previously, based on this algorithm, compact mechanisms of oxidation and combustion of propane, n-butane, n-pentane, and n-hexane were constructed. In this paper, we develop a nonempirical detailed mechanism of oxidation and combustion of n-heptane. The most important feature of the new mechanism is its ability to predict the staging of the process in the form of cool and blue flames at low autoignition temperatures. A comparison of the simulation results with the available experimental data is conducted.


paraffin hydrocarbons C1–C7 oxidation combustion kinetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Chevalier, P. Louessard, U. C. Muller, and J. Warnatz, in Proc. Joint Meeting of Sov. Ital. Sections Comb. Inst. (Combustion Inst., Pisa, 1990), p. 5.Google Scholar
  2. 2.
    F. Buda, R. Bounaceur, et al., Combust. Flame 142, 170 (2005).CrossRefGoogle Scholar
  3. 3.
    A. S. Sokolik, Self-Ignition, Flame, and Detonation in Gases (Akad. Nauk SSSR, Moscow, 1960) [in Russian].Google Scholar
  4. 4.
    A. S. Sokolik and S. A. Yantovskii, Zh. Fiz. Khim. 20, 13 (1946).Google Scholar
  5. 5.
    V. Ya. Basevich and S. M. Frolov, Usp. Khim. 76, 927 (2007).Google Scholar
  6. 6.
    V. Ya. Basevich, V. I. Vedeneev, S. M. Frolov, and L. B. Romanovich, Khim. Fiz. 25(11), 87 (2006).Google Scholar
  7. 7.
    V. Ya. Basevich, A. A. Belyaev, and S. M. Frolov, Khim. Fiz. 26(7), 37 (2007) [Russ. J. Phys. Chem. B 1, 493 (2007)].Google Scholar
  8. 8.
    V. Ya. Basevich, A. A. Belyaev, and S. M. Frolov, Khim. Fiz. 28(8), 59 (2009) [Russ. J. Phys. Chem. B 3, 629 (2009)].Google Scholar
  9. 9.
    V. Ya. Basevich, A. A. Belyaev, and S. M. Frolov, Khim. Fiz. 29(7), 71 (2010) [Russ. J. Phys. Chem. B 4, 694 (2010)].Google Scholar
  10. 10.
    H. J. Curran, P. Gaffuri, W. J. Pitz, and C. K. Westbrook, Combust. Flame 114, 149 (1998).CrossRefGoogle Scholar
  11. 11.
    M. Chaos, A. Kazakov, Z. Zhao, and F. I. Dryer, Int. J. Chem. Kinet. 39, 399 (2007).CrossRefGoogle Scholar
  12. 12.
    H. Rogener, Z. Elektrochem. Angew. Phys. Chem. 53, 389 (1949).Google Scholar
  13. 13.
    C. F. Taylor, E. S. Taylor, J. S. Livengood, et al., SAE Quart. Trans. 4, 232 (1950).Google Scholar
  14. 14.
    H. Ciezki and G. Adomeit, in Proc. 16th Intern. Symp. on Shock Tubes and Waves (Niagara Falls, 1987), p. 481.Google Scholar
  15. 15.
    Ch. Poppe, M. Schreber, and J. F. Griffith, in Proc. Joint Meeting British and German Sections of The Combustion Institute (Cambridge, 1993), p. 1993.Google Scholar
  16. 16.
    H. Ciezki and G. Adomeit, Combust. Flame 93, 421 (1993).CrossRefGoogle Scholar
  17. 17.
    R. Minetti, M. Carlier, M. Ribaucour, et al., Combust. Flame 102, 298 (1995).CrossRefGoogle Scholar
  18. 18.
    B. M. Gauthier, D. F. Davidson, and R. K. Hanson, Combust. Flame 139, 300 (2004).CrossRefGoogle Scholar
  19. 19.
    V. Ya. Basevich, V. I. Vedeneev, S. M. Frolov, and L. B. Romanovich, Khim. Fiz. 23(1), 50 (2004).Google Scholar
  20. 20.
    H. Machrafi and S. Cavadias, Combust. Flame 155, 557 (2008).CrossRefGoogle Scholar
  21. 21.
    A. A. Belyaev and V. S. Posvyanskii, in Algorithms and Programs, Inform. Byull. Gos. Fonda Algoritmov Programm SSSR (1985), No. 3, p. 35.Google Scholar
  22. 22.
    M. Gerstein, O. Levin, and E. L. Wang, JACS 73, 418 (1951).CrossRefGoogle Scholar
  23. 23.
    G. J. Gibbs and H. F. Calcote, J. Chem. Eng. Data 4, 226 (1959).CrossRefGoogle Scholar
  24. 24.
    S. G. Davis and C. K. Law, Proc. Combust. Inst. 27, 521 (1998).Google Scholar
  25. 25.
    Y. Hyang, C. J. Sung, and J. A. Eng, Combust. Flame 139, 239 (2004).CrossRefGoogle Scholar
  26. 26.
    S. M. Frolov, V. S. Posvyanskii, V. Ya. Basevich, et al., Khim. Fiz. 23(4), 75 (2004).Google Scholar
  27. 27.
    S. M. Frolov, V. Ya. Basevich, A. A. Belyaev, V. S. Posvyanskii, and V. A. Smetanyuk, in Combustion and Pollution: Environmental Impact, Ed. by G. D. Roy, S. M. Frolov, and A. M. Starik (Torus, Moscow, 2005), p. 117 [in Russian].Google Scholar
  28. 28.
    M. Takei, H. Kobayashi, and T. Niioka, Int. J. Micrograv. Res. Appl. Micrograv. Sci. Technol. 6(3), 184 (1993).Google Scholar
  29. 29.
    T. Niioka, H. Kobayashi, and D. Mito, in Proc. IVTAM Symp. on Mechanics and Combustion of Droplet and Sprays (Tainan, 1994), p. 367.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. Ya. Basevich
    • 1
  • A. A. Belyaev
    • 1
  • V. S. Posvyanskii
    • 1
  • S. M. Frolov
    • 1
  1. 1.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia

Personalised recommendations