Russian Journal of Physical Chemistry B

, Volume 4, Issue 1, pp 29–33 | Cite as

A study of the molecular structure of bacterial lysodektose by quantum-chemical calculations and EPR spectroscopy

  • A. V. Kulikov
  • A. F. Shestakov
  • L. A. Levchenko
  • A. P. Sadkov
  • N. V. Lariontseva
Structure of Chemical Compounds
  • 20 Downloads

Abstract

The standard redox potentials of the sequential oxidation of lysodektose to the corresponding nitrone were estimated by quantum chemistry methods. It follows from these estimates that the experimentally observed accumulation of the intermediate nitroxyl radical in substantial amounts during the oxidation of lysodektose can be explained by high medium reorganization energy in the oxidation of the nitrosyl radical with simultaneous proton abstraction. The EPR spectra of the radical lysodektose form were modeled. Arguments in favor of the suggestion that one nonequivalent proton appeared in the formation of an intramolecular H-bond were presented. Quantum-chemical calculations of the hyperfine structure constants were in satisfactory agreement with experiment.

Keywords

Nitroxyl Nitrone Reorganization Energy Nitroxyl Radical Micrococcus Luteus 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. N. Ostrovskii, V. I. Binyukov, S. I. Stepanov, et al., Dokl. Akad. Nauk 310, 483 (1990).Google Scholar
  2. 2.
    K. B. Shumaev, V. I. Binyukov, V. V. Ignatov, et al., Biokhimiya 57, 246 (1992).Google Scholar
  3. 3.
    S. I. Stepanov, E. F. Kharat’yan, D. N. Ostrovskii, et al., Mikrobiologiya 61, 369 (1992).Google Scholar
  4. 4.
    D. N. Ostrovskii, G. R. Demina, V. I. Binyukov, A. S. Shashkov, and M. Shloter, Mikrobiologiya 72, 594 (2003).Google Scholar
  5. 5.
    S. A. Marakushev, L. A. Levchenko, S. A. Sadkov, and A. V. Kulikov, Biofizika 43, 77 (1998) [Biophysics 43, 77 (1998)].Google Scholar
  6. 6.
    L. A. Levchenko, A. P. Sadkov, N. V. Lariontseva, et al., Dokl. Akad. Nauk 364, 117 (1999).Google Scholar
  7. 7.
    V. Biniukov, E. Kharatian, D. Ostrovsky, and A. Shashkov, Free Rad. Res. Comms. 14(12), 91 (1991).CrossRefGoogle Scholar
  8. 8.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).CrossRefGoogle Scholar
  9. 9.
    W. J. Stevens, H. Basch, and M. J. Krauss, Chem. Phys. 81, 6026 (1984).Google Scholar
  10. 10.
    D. N. Laikov, Chem. Phys. Lett. 281, 151 (1997).CrossRefGoogle Scholar
  11. 11.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr. T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersso, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J.V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, and J. A. Pople, Gaussian 03, Rev. C 02 (Gaussian, Inc., Wallingford CT, 2004).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. V. Kulikov
    • 1
  • A. F. Shestakov
    • 1
  • L. A. Levchenko
    • 1
  • A. P. Sadkov
    • 1
  • N. V. Lariontseva
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations