Catalytic Reaction Mechanism Testing

Reactivity. Kinetics of Chemical Reactions. Catalysis


Experimental tests for determining the mechanism of catalytic reactions were suggested. Quantitative relations were obtained that allowed the mechanism of formation of product molecules in an arbitrary catalytic reaction to be determined by isothermic relaxation methods. The relations found were compared with the literature data on the 2CO + O2 → 2CO2 reaction on the (111) surface of Pd. The experimental data were shown to be insufficient for the unambiguous determination of the mechanism of this reaction. The results available corresponded to the participation of physically adsorbed CO molecules in the formation of CO2. The temperature dependence of the reaction rate was determined by the transition of strongly adsorbed oxygen atoms into the mobile reactive state.


Chemisorption Adsorbed Oxygen Product Molecule Shock Mechanism Precursor State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. B. Taylor and I. Langmuir, Phys. Rev. 33(4), 423 (1933).CrossRefGoogle Scholar
  2. 2.
    P. Kisliuk, J. Phys. Chem. Solids 3(1), 95 (1957).CrossRefGoogle Scholar
  3. 3.
    V. F. Kharlamov, Khim. Fiz. 13(6), 83 (1994).Google Scholar
  4. 4.
    V. F. Kharlamov, Kinet. Katal. 46(4), 497 (2005) [Kinet. Catal. 46 (4), 464 (2005)].CrossRefGoogle Scholar
  5. 5.
    V. F. Kharlamov, E. P. Krutovskii, K. M. Anufriev, et al., Pis’ma Zh. Tekh. Fiz. 24(5), 23 (1998).Google Scholar
  6. 6.
    V. F. Kharlamov and K. M. Anufriev, Pis’ma Zh. Tekh. Fiz. 25(15), 27 (1999).Google Scholar
  7. 7.
    V. F. Kharlamov and T. S. Rogozhina, Zh. Fiz. Khim. 77(4), 632 (2003) [Russ. J. Phys. Chem. 77 (4), 556 (2003)].Google Scholar
  8. 8.
    V. F. Kharlamov and F. V. Kharlamov, Kinet. Katal. 48(3), 402 (2007) [Kinet. Catal. 48 (3), 430 (2007)].CrossRefGoogle Scholar
  9. 9.
    T. Engel and G. Ertl, J. Chem. Phys. 69(3), 1267 (1978).CrossRefGoogle Scholar
  10. 10.
    H. Conrad, G. Ertl, J. Koch, and E. E. Latta, Surf. Sci. 43(2), 462 (1974).CrossRefGoogle Scholar
  11. 11.
    R. A. Shigeishi and D. A. King, Surf. Sci. 58(2), 379 (1976).CrossRefGoogle Scholar
  12. 12.
    G. Ertl, M. Neumann, and R. M. Streit, Surf. Sci. 64(2), 393 (1977).CrossRefGoogle Scholar
  13. 13.
    S. L. Kiperman, N. A. Gaidai, N. V. Nekrasov, et al., Chem. Eng. Sci. 5, 4305 (1999).CrossRefGoogle Scholar
  14. 14.
    H. Conrad, G. Ertl, and J. Kuppers, Surf. Sci. 76(2), 323 (1978).CrossRefGoogle Scholar
  15. 15.
    V. V. Gorodetskii, A. V. Matveev, E. A. Podgornov, and F. Zaera, Top. Catal. 32(1–2), 17 (2005).CrossRefGoogle Scholar
  16. 16.
    H. Hopster, H. Ibach, and G. Comsa, J. Catal. 46(1), 37 (1977).CrossRefGoogle Scholar
  17. 17.
    R. W. McCabe and L. D. Schmidt, Surf. Sci. 66(1), 101 (1977).CrossRefGoogle Scholar
  18. 18.
    G. Ertl and J. Koch, Z. Naturforsch., A: Phys. Sci. 25(12), 1906 (1970).Google Scholar
  19. 19.
    V. A. Shmachkov, V. F. Malakhov, V. Yu. Vasil’ev, and A. M. Kolchin, Kinet. Katal. 18(2), 572 (1977).Google Scholar
  20. 20.
    N. Pacia, A. Cassuto, A. Pentenero, and B. Weber, J. Catal. 41(3), 455 (1976).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  1. 1.Orel State Technical UniversityOrelRussia

Personalised recommendations