Advertisement

Russian Journal of Pacific Geology

, Volume 10, Issue 2, pp 132–140 | Cite as

Composition, age, and tectonic position of granitoids of the Shmakovka complex

  • N. N. Kruk
  • V. V. Golozubov
  • T. B. Bayanova
  • S. A. Kasatkin
Article
  • 31 Downloads

Abstract

The geological, geochemical, and geochronological data on the granitiods of the Shmakovka massif, which represents a petrotype of the synonymous complex (southern Russian Primorye), show that the granitoid intrusions of the Shmakovka Complex play a “coupling” role, occurring in different blocks of the Khanka composite terrane. The geochemical and isotopic features of the granitoids indicate that their formation resulted from melting of a “mixed,” substantially metapelite, source similar to the most intensely metamorphosed rocks of the Khanka massif. According to U–Pb measurements, the granitoids are 490 ± 1 Ma old. The analysis of the distribution of Early Paleozoic I-, S-, and A-type granitoids in southern Primorye reveals that Late Cambrian–Early Ordovician endogenic events marked the amalgamation of Precambrian–Early Paleozoic blocks and the eventual formation of the Bureya–Jiamusi superterrane (Bureya–Khanka orogenic belt).

Keywords

granitoids geochemistry geochronology Khanka massif Bureya–Jiamusi superterrane southern Primorye Russia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Geodynamics, Magmatism, and Metallogeny of East Russia, Ed. by A. I. Khanchuk (Dal’nauka, Vladivostok, 2006) [in Russian].Google Scholar
  2. 2.
    State Geological Map of the Russian Federation on a Scale 1000000. Third Generation. Dal’nevostochnaya Series. Sheets L-52, 53, K-52, 53 (Kartfabrika VSEGEI, St. Petersburg, 2006) [in Russian].Google Scholar
  3. 3.
    N. N. Kruk, V. P. Kovach, V. V. Golozubov, S. A. Kasatkin, L. B. Terent’eva, and S. N. Lavrik, “Nd isotope systematics in metamorphic rocks of the southern Russian Far East,” Dokl. Earth Sci. 455 1, 233–237 (2014).CrossRefGoogle Scholar
  4. 4.
    L. M. Parfenov, N. A. Berzin, A. I. Khanchuk, G. Badarch, V. G. Belichenko, A. N. Bulgatov, S. I. Dril’, G. L. Kirillova, M. I. Kuz’min, W. J. Nokleberg, A. V. Prokopiev, V. F. Timofeev, O. Tomurtogoo, and H. Yan, “Model of formation of the orogenic belts of Central and Northeastern Asia,” Tikhookean. Geol. 22 6, 7–41 (2003).Google Scholar
  5. 5.
    Resolution of 4th Interdisciplinary Regional Conference on the Precambrian and Phanerozoic of the Southern Far East and Eastern Transbaikalia (KhGGP, Khabarovsk, 1994) [in Russian].Google Scholar
  6. 6.
    A. A. Sorokin, A. B. Kotov, E. B. Sal’nikova, A. P. Sorokin, S. Z. Yakovleva, Yu. V. Plotkina, B. M. Gorokhovskii, “The Early Paleozoic age of granitoids of the Kiviliyskii Complex of the Bureya Terrane (eastern flank of the Central Asian Fold Belt),” Dokl. Earth Sci. 440 1, 1253–1257 (2011).CrossRefGoogle Scholar
  7. 7.
    A. A. Sorokin, A. B. Kotov, E. B. Sal’nikova, N. M. Kudryashov, S. D. Velikoslavenskii, S. Z. Yakovleva, A. M. Fedoseenko, Yu. V. Plotkina, “Early Paleozoic granitoids in the Lesser Khingan Terrane, Central Asian Foldbelt: age, geochemistry, and geodynamic interpretations,” Petrology 19 6, 601–617 (2011).CrossRefGoogle Scholar
  8. 8.
    A. I. Khanchuk, V. V. Ratkin, M. D. Ryazantseva, V. V. Golozubov, and N. G. Gonokhova, Geology and Mineral Resources of Primorye (Dal’nauka, Vladivostok, 1995) [in Russian].Google Scholar
  9. 9.
    A. I. Khanchuk, G. M. Vovna, V. I. Kiselev, M. A. Mishkin, and S. N. Lavrik, “First results of zircon LA-ICP-MS U–Pb dating of the rocks from the granulite complex of Khanka Massif in the Primorye region,” Dokl. Earth Sci. 434 2, 1164–1167 (2010).CrossRefGoogle Scholar
  10. 10.
    A. I. Khanchuk, V. G. Sakhno, and A. A. Alenicheva, “First SHRIMP U–Pb zircon dating of magmatic complexes in the southwestern Primor’e Region,” Dokl. Earth Sci. 431 2, 424–428 (2010).CrossRefGoogle Scholar
  11. 11.
    A. I. Khanchuk, N. N. Kruk, V. V. Golozubov, V. P. Kovach, P. A. Serov, V. V. Kholodnov, V. I. Gvozdev, S. A. Kasatkin, “The Nature of the continental crust of Sikhote-Alin as evidenced from the Nd isotopy of rocks of southern Primorie,” Dokl. Earth Sci. 451 2, 809–813 (2013).CrossRefGoogle Scholar
  12. 12.
    W. V. Boynton, “Cosmochemistry of the rare earth elements: meteorite studies,” in Rare Earth Element Geochemistry, Ed. by P. Henderson et al. (Elsevier, Amsterdam, 1984).Google Scholar
  13. 13.
    B. Chappel and A. White, “Two contrasting types of granites,” Pacific Geol. 8 2, 173–174 (1974).Google Scholar
  14. 14.
    G. N. Eby, “The A-type granitoids: a review of their occurrence and chemical characteristics and speculations on their petrogenesis,” Lithos 26, 115–134 (1990).CrossRefGoogle Scholar
  15. 15.
    B. R. Frost, C. G. Barnes, W. J. Collins, et al., “A geochemical classification for granitic rocks,” J. Petrol. 42, 2033–2048 (2001).CrossRefGoogle Scholar
  16. 16.
    W. C. Ge, F. Y. Wu, C. Y. Zhou, and Rahman A. A. Abdel, “Emplacement age of the Tahe Granite and its constraints on the tectonic nature of the Erguna Block in the northern part of the Da Hinggan Range,” Chin. Sci. Bull. 50, 2097–2105 (2005).CrossRefGoogle Scholar
  17. 17.
    W. C. Ge, Z. M. Sui, F. Y. Wu, et al., “Zircon U-Pb ages, Hf isotopic characteristics and their implications for the Early Paleozoic granites in the northwestern Da Hinggan Mountains, northeastern China,” Acta Petrol. Sinica 23, 423–440 (2007).Google Scholar
  18. 18.
    T. E. Krogh, “A low-contamination method for hydrothermal dissolution of zircon and extraction of U and Pb for isotopic age determinations,” Geochim. Cosmochim. Acta 37, 485–494 (1973).CrossRefGoogle Scholar
  19. 19.
    R. W. Le Maitre, A classification of Igneous rocks and Glossary of Terms: Recommendations of the International Union of Geological Sciences, Subcommission on the Systematics of Igneous Rocks (Blackwell, Oxford, 1989).Google Scholar
  20. 20.
    M. C. Loiselle and D. R. Wones, “Characteristics and origin of anarogenic granites,” Geol. Soc. Am. Abst. Progr. 11, 468 (1979).Google Scholar
  21. 21.
    K. R. Ludwig, “PBDAT—a computer program for processing Pb-U-Th isotope data. Version 1.22,” U.S. Geol. Surv. Open-File Rept., No. 88–542 (1991).Google Scholar
  22. 22.
    K. R. Ludwig, “ISOPLOT/Ex—a geochronological toolkit for Microsoft Excel, Version 2.05,” Berkeley Geochronol. Center Spec. Publ., No. 1a, (1999).Google Scholar
  23. 23.
    P. D. Maniar and P. M. Piccoli, “Tectonic discrimination of granitoids,” Geology 101, 635–643 (1989).Google Scholar
  24. 24.
    A. E. Patino Douce, E. D. Humphreys, and A. D. Johnston, “Anatexis and metamorphism in tectonically thickened continental crust exemplified by the Sevier Hinterland, western North America,” Earth Planet. Sci. Lett. 97, 290–315 (1990).CrossRefGoogle Scholar
  25. 25.
    A. E. Patino Douce, “What do experiments tell us about the relative contributions of crust and mantle to the origin of granitic magmas?” Geol. Soc. London. Sp. Publ. 168, 55–75 (1999).CrossRefGoogle Scholar
  26. 26.
    J. A. Pearce, N. B. W. Harris, and A. G. Tindle, “Trace element discrimination diagrams for the tectonic interpretation of granitic rocks,” J. Petrol. 25, 956–983 (1984).CrossRefGoogle Scholar
  27. 27.
    J. S. Stacey and J. D. Kramers, “Approximation of terrestrial lead isotope evolution by a two-stage model,” Earth Planet. Sci. Lett. 26 2, 207–221 (1975).CrossRefGoogle Scholar
  28. 28.
    R. H. Steiger and E. Jager, “Subcommission on geochronology: convention on the use of decay constants in geoand cosmochronology,” Earth Planet. Sci. Lett. 36 3, 359–362 (1977).CrossRefGoogle Scholar
  29. 29.
    Taylor, S.R. and McLennan, S.M., The Continental Crust: Its Composition and Evolution, (Blackwell, London, 1985).Google Scholar
  30. 30.
    J. B. Whalen, K. L. Currie, and B. Chappel, “A-type granites: geochemical characteristics, discrimination and petrogenesis,” Contrib. Mineral. Petrol. 95, 407–419 (1987).CrossRefGoogle Scholar
  31. 31.
    S. A. Wilde, X. Z. Zhang, and F. Y. Wu, “Extension of a newly-identified 500 Ma metamorphic terrain in Northeast China: further U-Pb SHRIMP dating of the Mashan Complex, Heilongjiang Province, China,” Tectonophysics 328, 115–130 (2000).CrossRefGoogle Scholar
  32. 32.
    S. A. Wilde, “Early Paleozoic high-grade metamorphism in the Jiamusi Massif, northeastern China: possible links to Gondwana and Siberia,” in Assembly and Breakup of Rodinia Supercontinent: Evidence from South Siberia. Project IGCP-440: Guidebook and Abstract Volume (Irkutsk, 2001), pp. 192–197.Google Scholar
  33. 33.
    S. A. Wilde, F. Y. Wu, and X. Z. Zhang, “Late Pan-African magmatism in Northeastern China: SHRIMP UPb zircon evidence for igneous ages from the Mashan Complex,” Precambrian Res. 122, 311–327 (2003).CrossRefGoogle Scholar
  34. 34.
    F. Y. Wu, D. Y. Sun, W. C. Ge, et al., “Geochronology of the Phanerozoic granitoids in Northeastern China,” J. Asian Earth Sci. 41, 1–30 (2011).CrossRefGoogle Scholar
  35. 35.
    H. Yang, Y. L. Zhang, H. J. Chen, et al., “Zircon U-Pb ages of Khanka Lake granitic complex and its geological implication,” Global Geol. 31, 621–630 (2012).Google Scholar
  36. 36.
    J. B. Zhou, S. A. Wilde, G. C. Zhao, et al., “Pan-African metamorphic and magmatic rocks of the Khanka Massif, NE China: further evidence regarding their affinity,” Geol. Mag. 147 5, 737–749 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • N. N. Kruk
    • 1
    • 2
  • V. V. Golozubov
    • 3
  • T. B. Bayanova
    • 4
  • S. A. Kasatkin
    • 1
  1. 1.Sobolev Institute of Geology and Mineralogy (IGM SO RAN), Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk National Research State UniversityNovosibirskRussia
  3. 3.Far East Geological Institute (DVGI DVO RAN), Far East BranchRussian Academy of SciencesVladivostokRussia
  4. 4.Geological Institute, Kola Scientific CenterRussian Academy of SciencesApatityRussia

Personalised recommendations