Russian Journal of Pacific Geology

, Volume 9, Issue 5, pp 323–337 | Cite as

Geology, geochemistry, and paleomagnetism of rocks of the Utitsa Formation, north Sikhote Alin

  • A. V. Kudymov
  • I. P. Voinova
  • A. I. Tikhomirova
  • A. N. Didenko
Article

Abstract

The results of comprehensive geological, petrochemical, and paleomagnetic study of the Cenomanian–Turonian volcanic and sedimentary rocks of the Utitsa Formation are presented. The petrochemical characteristics indicate that the volcanic rocks were formed in a volcanic arc setting with supra-subduction geochemical sources. According to petro- and paleomagnetic study of the volcanic rocks, the paleolatitude of their formation is 53.7° ± 10.8° N and the coordinates of the paleomagnetic pole are Plat = 81.6°, Plong = 208.2°, dp = 10.8, dm = 12.5°. Comparison with the Mesozoic area of the trajectory of apparent migration of the pole of stable Siberia and Eurasia points to the autochtonous position of the Utitsa Formation relative to the Late Cretaceous continental margin. The data on the magnetic structure of the sedimentary rocks of the Utitsa Formation indicate the presence of an ENE–WSW-trending (50°–70°–230°–250°) bottom paleocurrent in the sedimentation basin.

Keywords

petrochemistry paleomagnetism volcanosedimentary complex Utitsa Formation Cenomanian Turonian Zhuravlevo–Amur terrane southern Far East Russia 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. P. Voinova, S. V. Zyabrev, and V. S. Prikhod’ko, “Petrochemical features of within-plate oceanic volcanic rocks of the Kiselevka–Manoma terrane (northern Sikhote Alin),” Tikhookean. Geol. 13 (6), 83–96 (1994).Google Scholar
  2. 2.
    Geodynamics, Magmatism, and Metallogeny of East Russia, Ed. by A. I. Khanchuk (Dal’nauka, Vladivostok, 2006) [in Russian].Google Scholar
  3. 3.
    V. V. Golozubov, Tectonics of the Jurassic and Lower Cretaceous Complexes of the Northwestern Pacific Margin (Dal’nauka, Vladivostok, 2006) [in Russian].Google Scholar
  4. 4.
    A. N. Didenko, A. I. Khanchuk, A. I. Tikhomirova, and I. P. Voinova, “Eastern segment of the Kiselevka–Manoma terrane (northern Sikhote Alin): paleomagnetism and geodynamic implications,” Russ. J. Pac. Geol. 33 (1), 18–37 (2014).CrossRefGoogle Scholar
  5. 5.
    A. N. Didenko, A. I. Khanchuk, and A. I. Tikhomirova, “Paleomagnetism of the Kiselevka Complex of the Kiselevka–Manoma Terrain (Sikhote-Alin): geodynamic consequences,” Dokl. Earth Sci. 454 (2), 108–113 (2014).CrossRefGoogle Scholar
  6. 6.
    V. A. Kaidalov, “On the problems of stratigraphy of the Cretaceous deposits of the Lower Amur region,” in Precambrian and Phanerozoic Stratigraphy of the Transbaikal region and southern Far East. Proceedings of the 4th Far East Regional Interdisciplinary Stratigraphic Conference, Khabarovsk, Russia, 1990, (Khabarovsk, 1990), pp. 236–239 [in Russian].Google Scholar
  7. 7.
    V. A. Kaidalov, T. D. Belomestnova, et al., State geological map of the Russian Federation on a Scale 1:200000. 2nd Ed. Ser. Nikolaevskaya. Sheet M-51-I (VSEGEI, St. Petersburg, 2007) [in Russian].Google Scholar
  8. 8.
    I. V. Kemkin, Geodynamic Evolution of Sikhote Alin and Sea of Japan Region in the Mesozoic (Nauka, Moscow, 2006) [in Russian].Google Scholar
  9. 9.
    G. L. Kirillova and V. I. Anoikin, “The structure of the Amur–Gorin fragment of the Late Mesozoic East Asian accretionary system,” Dokl. Earth Sci. 436 (1), 1–5 (2011).CrossRefGoogle Scholar
  10. 10.
    A. V. Kudymov, “Cenozoic stress fields in the Kiselevka fault zone, Lower Amur Region,” Russ. J. Pac. Geol. 4 (6), 495–501 (2010).CrossRefGoogle Scholar
  11. 11.
    S. A. Medvedeva and G. L. Kirillova, “Reconstruction of the Late Mesozoic geodynamic processes on the continental margin based on petrochemistry of sandstones: Lower Amur chain of the Sikhote Alin orogenic belt,” in Tectonics and Metallogeny of the Northern Circum-Pacific and East Asia: Proceedings of the Conference in Memory of L.M. Parfenova, Khabarovsk, Russia, 2007, (Khabarovsk, 2007), pp. 225–228 [in Russian].Google Scholar
  12. 12.
    D. V. Metelkin, Evolution of the Central Asian Structure and Role of the Strike-Slip Tectonics based on Paleomagnetic Data, (Inst. Neftegaz. Geol. Geofiz. im. A.A. Trofimuka, Sib. Otd. Ross. Akad. Nauk, Novosibirsk, 2012) [in Russian].Google Scholar
  13. 13.
    B. A. Natal’in and Ch. B. Borukaev, “Mesozoic tectonics of the southern Far East,” Vestn. Dal’nevost. Otd. Akad. Nauk SSSR, No. 2, 68–78 (1990).Google Scholar
  14. 14.
    B. A. Natal’in and Ch. B. Borukaev, “Mesozoic sutures at the southern Soviet Far East,” Geotektonika, No. 1, 84–97 (1991).Google Scholar
  15. 15.
    B. A. Natal’in, “Mesozoic accretionary and collisional tectonics of the southern Soviet Far East,” Tikhookean. Geol., No. 5, 3–23 (1991).Google Scholar
  16. 16.
    B. A. Natal’in and M. Faure, “Mesozoic geodynamics of the eastern Asian margin,” Tikhookean. Geol., No. 6, 3–20 (1991).Google Scholar
  17. 17.
    L. M. Parfenov, U. J. Nokleberg, and A. I. Khanchuk, “Principles of compilation and main units of the geodynamic map of the northern and central Asia, southern Russian Far East, Korea, and Japan,” Tikhookean. Geol., No. 3, 3–13 (1998).Google Scholar
  18. 18.
    V. P. Simanenko and A. I. Khanchuk, “Cenomanian volcanism of the eastern Sikhote-Alin volcanic belt: geochemical features,” Geochem. Int., 41 (8), 787–798 (2003).Google Scholar
  19. 19.
    A. I. Stupina, “Paleomagnetism of the Jurassic–Cretaceous rocks of the kiselevka block of the Kiselevka–Manoma terrane,” Vestn. Dal’nevost. Ots. Ross. Akad. NaukVO RAN, No. 6, 120–124 (2010).Google Scholar
  20. 20.
    A. I. Khanchuk, N. V. Ognyanov, I. M. Popova, and A. N. Filippov, “New data on the Early Cretaceous deposits of the Lower Amur region,” Dokl. Ross. Akad. 338 (5), 667–671 (1994).Google Scholar
  21. 21.
    A. I. Khanchuk, “Geology and Minerals of the Primorsky Krai,” Ed. by A. I. Khanchuk, V. V. Ratkin, M. D. Ryazantseva, V. V. Golozubov, and N. G. Gonokhova (Dal’nauka, Vladivostok, 1995) [in Russian].Google Scholar
  22. 22.
    A. I. Khanchuk and V. V. Ivanov, “Geodynamics of East Russia in the Mesocenozoic and gold mineralization,” in Geodynamics and Metallogeny (Dal’nauka, Vladivostok, 1999), pp. 7–30 [in Russian].Google Scholar
  23. 23.
    A. I. Khanchuk, “Paleogeodynamic analysis of the for-mation of Far East ore deposits,” in Ore Deposits of Continental Margins (Dal’nauka, Vladivostok, 2000), pp. 5–34 [in Russian].Google Scholar
  24. 24.
    A. I. Khanchuk and I. V. Kemkin, “Geodynamic evolution of the Sea of japan region in the Mesozoic,” Vestn. Dal’nevost. Otd. Ross. Akad. Nauk, No. 6, 94–108 (2003).Google Scholar
  25. 25.
    B. Cabanis and M. Lecolle, “Le diagramme La/10-Y/15-Nb/8: un outil pour la discrimination des series volcaniques et la mise en evidence des processus de melange et/ou de contamination crustale,” C.R. Acad. Sci. Ser. II 309, 2023–2029 (1989).Google Scholar
  26. 26.
    K. J. Cox, J. D. Bell, and R. J. Pankhurst, The Interpretation of Igneous Rocks (George Allen and Union, London, 1979).CrossRefGoogle Scholar
  27. 27.
    R. A. Fisher, “Dispersion on a sphere,” Proc. R. Soc. London, Ser. A, 217, 295–305 (1953).CrossRefGoogle Scholar
  28. 28.
    D. Flinn, “On the symmetry principle and the defor-mation ellipsoid,” Geol. Mag 102 (1), 36–45 (1965).CrossRefGoogle Scholar
  29. 29.
    V. V. Golozoubov, V. S. Markevich, and E. V. Bugdaeva, “Early Cretaceous changes of vegetation and environment in East Asia,” Palaegeogr., Palaeclimatol., Palaeecol., No. 153, 139–146 (1999).CrossRefGoogle Scholar
  30. 30.
    M. J. Le Bas, R. W. Le Maitre, A. Streckeisen, and B. A. Zanettin, “Chemical classification of volcanic rocks based on the total alkali silica diagram,” J. Petrol. 27, 745–750 (1986).CrossRefGoogle Scholar
  31. 31.
    M. A. Meschide, “A method of discriminating between different types of mid-ocean ridge basalts and continental tholeites with the Nb–Zr–Y diagram,” Chem. Geol. 56, 207–218 (1986).CrossRefGoogle Scholar
  32. 32.
    J. A. Pearce and J. R. Cann, “Tectonic setting of basic volcanic rocks determined using trace element analyses,” Earth Planet. Sci. Lett. 19, 290–300 (1973).CrossRefGoogle Scholar
  33. 33.
    J. A. Pearce and M. J. Norry, “Petrogenetic implication of Ti, Zr, Y and Nb variations in volcanic rocks,” Contrib. Mineral. Petrol 69, 33–47 (1979).CrossRefGoogle Scholar
  34. 34.
    J. A. Pearce, “Role of the sub-continental lithosphere in magma genesis at active continental margins,” in Continental Basalts and Mantle Xenoliths, Ed. by C. J. Hawkesworth and M. J. Norry (Shiva, Nantwich, 1983), pp. 230–242Google Scholar
  35. 35.
    S. S. Sun and W. F. McDonough, “Chemical and isotope systematics of oceanic basalts: implications for mantle composition and processes,” in Magmatism in the Oceanic Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Spec. Publ. 42, 313–345 (1989).Google Scholar
  36. 36.
    R. N. Thompson, “British Tertiary volcanic province,” Scott. J. Geol. 18, 49–107 (1982).CrossRefGoogle Scholar
  37. 37.
    T. H. Torsvik, R. D. Muller, R. Van der Voo, B. Steinberger, C. Gaina, “Global plate motion frames: toward a unified model,” Rev. Geophys. 46 (3), RG3004 (2008).CrossRefGoogle Scholar
  38. 38.
    D. A. Wood, “The application of a Th–Hf–Ta diagram to problems of tectonomagmatic classification and to establishing the nature of crustal contamination of basaltic lavas of the British Tertiary Volcanic Province,” Earth Planet. Sci. Lett. 50 (1), 11–30 (1980).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2015

Authors and Affiliations

  • A. V. Kudymov
    • 1
  • I. P. Voinova
    • 1
  • A. I. Tikhomirova
    • 1
  • A. N. Didenko
    • 1
    • 2
  1. 1.Kosygin Institute of Tectonics and Geophysics, Far East BranchRussian Academy of SciencesKhabarovskRussia
  2. 2.Geological InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations