Advertisement

Russian Journal of Pacific Geology

, Volume 1, Issue 3, pp 265–275 | Cite as

Early Cretaceous volcanic rocks and Early Cenozoic extrusions of Cape Mary, Schmidt Peninsula, north Sakhalin: Geochemical study

  • V. P. Simanenko
  • S. V. Rasskazov
  • T. A. Yasnygina
  • A. I. Malinovskii
  • A. A. Chashchin
Article

Abstract

The Early Cretaceous volcanic rocks of the Mariisky sequence and Early Cenozoic extrusive-vent rocks of Cape Mary are exposed at the northwestern extremity of Schmidt Peninsula, north Sakhalin. In chemical composition, all the rocks are subdivided into four groups. Three groups include the volcanic rocks of the Mariisky sequence, which consists, from bottom to top, of calc-alkaline rocks, transitional calc-alkaline-tholeiite rocks, and incompatible element-depleted tholeiites. These rocks show subduction geochemical signatures and are considered as a fragment of the Moneron-Samarga island arc system. Trace-element modeling indicates their derivation through successive melting of garnet-bearing mantle and garnet-free shallower mantle sources containing amphibole; pyroxene; and, possibly, spinel. The mixed subduction and within-plate characteristics of the extrusive vent rocks of Cape Mary attest to their formation in a transform continental margin setting.

Keywords

early Cretaceous early Cenozoic island arcs basalts andesites trace elements Sakhalin Island 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Yu. A. Balashov, Geochemistry of Rare Earth Elements (Nauka, Moscow, 1976) [in Russian].Google Scholar
  2. 2.
    O. A. Bogatikov and A. A. Tsvetkov, Magmatic Evolution of Island Arcs (Nauka, Moscow, 1988) [in Russian].Google Scholar
  3. 3.
    V. V. Golozubov and A. I. Khanchuk, “The Taukha and the Zhuravlevka Terranes (Southern Sikhote-Alin) as Fragments of the Early Cretaceous Asian Margin,” Tikhookean. Geol., No. 2, 13–25 (1995).Google Scholar
  4. 4.
    State Geological Map of RF. Scale 1:200000. Sakhalin Ser. Sheet N-54-XVII. Explanatory Note, Ed. by B. A. Sal’nikov (St. Petersb. Kartfabrika Vseross. Geol. Inst., St. Petersburg, 2001) [in Russian].Google Scholar
  5. 5.
    A. I. Malinovskii, V. V. Golozubov, A. N. Filippov, et al., “Lower Cretaceous Deposits of the Kema River Basin (Eastern Sikhote-Alin): Sedimentary Fill of the Back-arc Basin,” Tikhookean. Geol. 21(1), 52–66 (2002).Google Scholar
  6. 6.
    Yu. A. Martynov, “Origin of Island-Arc Basalt Series from Nickel/Cobalt Ratios,” Dokl. Akad. Nauk SSSR 273(5), 1230–1232 (1983).Google Scholar
  7. 7.
    L. M. Parfenov, B. A. Natal’in, I. P. Voinova, et al., “Tectonic Evolution of Active Continental Margins on the Northwestern Pacific Margin,” Geotektonika 16(1), 85–104 (1981).Google Scholar
  8. 8.
    Yu. N. Raznitsin, Ophiolite Allochthons and Adjacent Deep-sea Basins in the Western Pacific (Nauka, Moscow, 1982) [in Russian].Google Scholar
  9. 9.
    S. V. Rasskazov, E. V. Saranina, Yu. A. Martynov, et al., “Evolution of Late Cenozoic Magmatism at the Active Continental Margin of Southern Primorye,” Tikhookean. Geol. 22(1), 92–109 (2003).Google Scholar
  10. 10.
    I. I. Ratnovskii, Geological Structure of the Schmidt Peninsula, Sakhalin Island (Gostoptekhizdat, Leningrad, 1960) [in Russian].Google Scholar
  11. 11.
    V. S. Rozhdestvenskii, “Geological and Tectonic Structure of the Schmidt Peninsula (Sakhalin Island),” Tikhookean. Geol., No. 3, 62–70 (1988).Google Scholar
  12. 12.
    V. S. Rozhdestvenskii, “Geodynamic Evolution of the Hokkaido-Sakhalin Fold System,” Tikhookean. Geol., No. 2, 76–88 (1993).Google Scholar
  13. 13.
    D. F. Semenov, Magmatic Rock Associations of the Pacific Foldbelts (Nauka, Moscow, 1982) [in Russian].Google Scholar
  14. 14.
    V. P. Simanenko, “The Samarga Belt,” in Volcanic Belts of East Asia (Nauka, Moscow, 1984), pp. 146–151 [in Russian].Google Scholar
  15. 15.
    V. P. Simanenko, “Late Mesozoic Volcanic Arcs of the Eastern Sikhote Alin and Sakhalin Island,” Tikhookean. Geol., No. 1, 7–13 (1986).Google Scholar
  16. 16.
    V. P. Simanenko, A. I. Khanchuk, and V. V. Golozubov, “First Data on the Geochemistry of Albian-Cenomanian Volcanism in Southern Primorye, Russia’s Far East,” Geokhimiya 40(1), 95–99 (2002) [Geochem. Int. 40 (1), 86–90 (2002)].Google Scholar
  17. 17.
    V. P. Simanenko, A. I. Malinovskii, and V. V. Golozubov, “Early Cretaceous Basalts of the Kema Terrane as a Fragment of the Moneron-Samarga Island-Arc System,” Tikhookean. Geol. 23(2), 30–51 (2004).Google Scholar
  18. 18.
    T. I. Frolova, L. L. Perchuk, and I. A. Burikova, Magmatism and Crust Transformation at Active Margins (Nedra, Moscow, 1989) [in Russian].Google Scholar
  19. 19.
    E. A. Yasnygina, S. V. Rasskazov, M. E. Markova, et al., ICP-MS Determination of Trace Elements in Basic and Intermediate Volcanic Rocks using Microwave Acid Digestion,” in Applied Geochemistry: Vol. 4. Analytical Study, Ed. by E. K. Burenkov and A. A. Kremenetskii (IMGRE, Moscow, 2003), pp. 48–56 [in Russian].Google Scholar
  20. 20.
    T. K. Brandshaw, C. J. Hawkesworth, and K. Gallagher, “Basaltic Volcanism in the Southern Basin and Range: No Role for a Mantle Plume,” Earth Planet. Sci. Lett. 116, 45–62 (1993).CrossRefGoogle Scholar
  21. 21.
    T. H. Green, J. D. Blundly, J. Adam, and G. M. Yaxley, “SIMS Determination of Trace Element Partition Coefficients between Garnet, Clinopyroxene and Hydrous Basalic Liquids at 2–7.5 GPA and 1080–1200°C,” Lithos 53, 165–187 (2000).CrossRefGoogle Scholar
  22. 22.
    I. Ikeda and H. Komatsu, “Early Cretaceous Volcanic Rocks of Rebun Island, North Hokkaido, Japan,” Monograph Assoc. Geol. Collab. Japan 31, 51–62 (1986).Google Scholar
  23. 23.
    P. B. Keleman, K. T. M. Johnson, R. J. Kinzler, and A. J. Irving, “High-Field-Strength Element Depletions due to Mantle-Magma Interaction,” Nature 345, 521–524 (1990).CrossRefGoogle Scholar
  24. 24.
    A. K. Kennedy, G. E. Lofgren, and G. J. Wasserburg, “An Experimental Study of Trace Element Partitioning between Olivine, Orthopyroxene and Melt in Chondrulites: Equilibrium Values and Kinetic Effects,” Earth Planet. Sci. Lett. 115, 177–195 (1993).CrossRefGoogle Scholar
  25. 25.
    K. Kiminami, K. Niida, H. Ando, et al., “Creataceous-Paleogene Arc-Trench Systems in Hokkaido,” in 29th IGC Field Trip Guide Book on Paleozoic and Mesozoic Terranes: Basement of the Japanese Island Arcs (Geol. Surv. Japan, Tsukuba, 1992), Vol. 1, pp. 1–43.Google Scholar
  26. 26.
    T. La Tourrette, R. L. Hervig, and J. R. Holloway, “Trace Element Partitioning between Amphibole, Phlogopite and Basanite Melt,” Earth Planet. Sci. Lett. 135, 13–30 (1995).CrossRefGoogle Scholar
  27. 27.
    R. W. Le Maitre, P. Baterman, A. Dudek, et al., A Classification of Igneous Rocks and Glossary of Terms (Oxford, Blackwell, 1989).Google Scholar
  28. 28.
    W. F. McDonough and S. S. Sun, “The Composition of the Earth,” Chem. Geol. 120, 223–253 (1995).CrossRefGoogle Scholar
  29. 29.
    M. Meschide, “A Method of Discriminating between Different Types of Mid-Ocean Ridge Basalts and Continental Tholeiites with the Nb-Zr-Y Diagram,” Chem. Geol. 56, 207–218 (1986).CrossRefGoogle Scholar
  30. 30.
    M. Nagata, N. Kito, and K. Niida, “The Kumaneshiri Group in the Kabato Mountains: the Age and Nature as an Early Cretaceous Volcanic Arc,” Monograph Assoc. Geol. Collab. Japan 31, 63–79 (1986).Google Scholar
  31. 31.
    J. A. Pearce and J. R. Cann, “Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses,” Earth Planet. Sci. Lett. 19, 290–300 (1973).CrossRefGoogle Scholar
  32. 32.
    J. W. Shervais, “Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas,” Earth Planet. Sci. Lett. 59, 101–118 (1982).CrossRefGoogle Scholar
  33. 33.
    D. V. Show, “Trace Element Fractionation during Anatexis,” Geochim. Cosmochim. Acta 34, 237–243 (1970).CrossRefGoogle Scholar
  34. 34.
    S. S. Sun and W. F. McDonough, “Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes,” in Magmatism in the Oceanic Basins, Ed. by A. D. Saunders and M. J. Norry, Geol. Soc. Spec. Publ, No. 42, 313–345 (1989).Google Scholar
  35. 35.
    M. Wilson, Igneous Petrogenesis: A Global Tectonic Approach (Happer Collins Academie, London, 1991).Google Scholar
  36. 36.
    D. A. Wood, “The Application of a Th-Hf-Ta Diagram to Problems of Tectonomagmatic Classification and to Establishing the Nature of Crustal Contamination of Basaltic Lavas of the British Tertiary Volcanic Province,” Earth Planet. Sci. Lett. 50, 11–30 (1980).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • V. P. Simanenko
    • 1
  • S. V. Rasskazov
    • 2
  • T. A. Yasnygina
    • 2
  • A. I. Malinovskii
    • 1
  • A. A. Chashchin
    • 1
  1. 1.Far East Geological Institute, Far East DivisionRussian Academy of SciencesVladivostokRussia
  2. 2.Institute of the Earth’s Crust, Siberian DivisionRussian Academy of SciencesIrkutskRussia

Personalised recommendations