Skip to main content
Log in

Stationary Solutions of Second-Order Equations for Fermions in Reissner–Nordström Space-Time

  • NUCLEI, PARTICLES, FIELDS, GRAVITATION, AND ASTROPHYSICS
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

The existence of degenerate stationary bound states with square-integrable radial wavefunctions was proven when second-order equations are used with the effective potential of the Reissner–Nordström (RN) field with two event horizons for charged and uncharged fermions. The fermions in such states are localized near event horizons within the ranges from zero to several fractions of Compton wavelength of fermions versus the values of gravitational and electromagnetic coupling constants and the values of angular and orbital momenta j, l. In case of extreme RN fields, the absence of stationary bound states of fermions with the energies of E < mc2 is shown for solutions of the second-order equation for any value of gravitational and electromagnetic coupling constants. The existence of a discrete energy spectrum is shown for the naked RN singularity, due to the solution of the second-order equation at definite values of physical parameters. The discrete spectrum exists for both charged and uncharged fermions. The naked RN singularity in quantum mechanics with the second-order equation for half-spin particles poses no threat to cosmic censorship, since it is covered with an infinitely large potential barrier. Electrically neutral systems of atomic type (RN collapsars with the definite number of fermions in degenerate bound states) are proposed to consider as particles of dark matter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. Note that the authors [21] used the Schrödinger-type equation (30) without factor 2. In our case, barrier K/(ρ – \(\rho _{{{\text{cl}}}}^{ \pm }\))2 is impenetrable if K ≥ 3/8.

REFERENCES

  1. V. P. Neznamov and I. I. Safronov, J. Exp. Theor. Phys. 127, 647 (2018).

  2. F. Finster, J. Smoller, and S.-T. Yau, J. Math. Phys. 41, 2173 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  3. H. Schmid, Math. Nachr. 274275, 117 (2004); arXiv:math-ph/0207039v2.

  4. C. L. Pekeris and K. Frankowski, Proc. Natl. Acad. Sci. U.S.A. 83, 1978 (1986).

    Article  ADS  Google Scholar 

  5. M. V. Gorbatenko, V. P. Neznamov, and E. Yu. Popov, Grav. Cosmol. 23, 245 (2017). doi 10.1134/S0202289317030057; J. Phys.: Conf. Ser. 678, 012037 (2016). doi 10.1088/1742-6596/678/1/012037; arXiv:1511.05058 [gr-qc].10.1134/S0202289317030057

  6. G. T. Horowitz and D. Marolf, Phys. Rev. D 52, 5670 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  7. H. Pruefer, Math. Ann. 95, 499 (1926).

    Article  MathSciNet  Google Scholar 

  8. I. Ulehla and M. Havlíček, Appl. Math. 25, 358 (1980).

    Google Scholar 

  9. I. Ulehla, M. Havlíček, and J. Hořejší, Phys. Lett. A 82, 64 (1981).

    Article  ADS  MathSciNet  Google Scholar 

  10. I. Ulehla, Preprint RL-82-095 (Rutherford Laboratory, 1982).

    Google Scholar 

  11. M. V. Gorbatenko and V. P. Neznamov, Phys. Rev. D 82, 104056 (2010); arXiv:1007.4631 [gr-qc].

    Article  ADS  Google Scholar 

  12. M. V. Gorbatenko and V. P. Neznamov, Phys. Rev. D 83, 105002 (2011); arxiv:1102.4067v1 [gr-qc].

    Article  ADS  Google Scholar 

  13. M. V. Gorbatenko and V. P. Neznamov, J. Mod. Phys. 6, 303 (2015); arXiv:1107.0844 [gr-qc].

    Article  Google Scholar 

  14. J. Schwinger, Phys. Rev. 130, 800 (1963).

    Article  ADS  MathSciNet  Google Scholar 

  15. D. R. Brill and J. A. Wheeler, Rev. Mod. Phys. 29, 465 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  16. S. R. Dolan, Dissertation (Cavendish Lab., 2006).

  17. A. Lasenby, C. Doran, J. Pritchard, A. Caceres, and S. Dolan, Phys. Rev. D 72, 105014 (2005).

    Article  ADS  Google Scholar 

  18. S. Dolan and D. Dempsey, Class. Quantum Grav. 32, 184001 (2015).

    Article  ADS  Google Scholar 

  19. L. L. Foldy and S. A. Wouthuysen, Phys. Rev. 78, 29 (1950);

    Article  ADS  Google Scholar 

  20. V. P. Neznamov, Phys. Part. Nucl. 37, 86 (2006);

    Article  Google Scholar 

  21. V. P. Neznamov and A. J. Silenko, J. Math. Phys. 50, 122301 (2009).

    Article  ADS  MathSciNet  Google Scholar 

  22. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics. Nonrelativistic Theory (Fizmatlit, Moscow, 1963; Pergamon, Oxford, 1965).

  23. J. Dittrich and P. Exner, J. Math. Phys. 26, 2000 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  24. E. Hairer and G. Wanner, Solving Ordinary Differential Equations II. Stiff and Differential-Algebraic Problems (Springer, Berlin, 1991, 1996).

  25. W. Pieper and W. Griener, Zs. Phys. 218, 327 (1969).

  26. M.-T. Wang, arXiv:1605.04968.

  27. R. Penrose, Riv. Nuovo Cim., Ser. I 1 (Num. Spec.), 252 (1969).

  28. R. S. Virbhadra, D. Narasimba, and S. M. Chitre, Astron. Astrophys. 337, 1 (1998).

    ADS  Google Scholar 

  29. K. S. Virbhadra and G. F. R. Ellis, Phys. Rev. D 65, 103004 (2002).

    Article  ADS  MathSciNet  Google Scholar 

  30. K. S. Virbhadra and C. R. Keeton, Phys. Rev. D 77, 124014 (2008).

    Article  ADS  Google Scholar 

  31. D. Dey, K. Bhattacharya, and N. Sarkar, Phys. Rev. D 88, 083532 (2013).

    Article  ADS  Google Scholar 

  32. P. S. Joshi, D. Malafaxina, and Maragan, Class. Quantum Grav. 31, 015002 (2014).

    Article  ADS  Google Scholar 

  33. A. Goel, R. Maity, P. Roy, and T. Sarkar, Phys. Rev. D 91, 104029 (2015); arXiv:1504.01302 [gr-qc].

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to M.V. Gorbatenko and E.Yu. Popov for fruitful discussions and to A.L. Novoselova for the essential technical assistance in preparation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. P. Neznamov.

Additional information

The article was translated by the authors.

Appendices

APPENDIX A

1.1 SELF-CONJUGATE SECOND-ORDER EQUATIONS FOR SPINOR WAVEFUNCTIONS OF FERMIONS IN SCHWARZSCHILD AND REISSNER–NORDSTRÖM FIELDS

Let us introduce dimensionless variables and denotations in Hamiltonian (9)

$${{H}_{\eta }} = {{H}_{1}} + V(\rho ),$$
((A.1))

where V(ρ) = αem/ρ. Taking into account (10) and (A.1), equation (5) has the form of

$$\left( {\varepsilon - V(\rho ) - {{H}_{1}}} \right){{\Psi }_{\eta }}\left( {\rho ,\theta ,\varphi } \right) = 0.$$
((A.2))

Let us multiply equation (A.2) on the left by operator \(\left( {\varepsilon - V\left( \rho \right) + {{H}_{1}}} \right)\). Then,

$$\left( {\varepsilon - V(\rho ) + {{H}_{1}}} \right)\left( {\varepsilon - V(\rho ) - {{H}_{1}}} \right){{\Psi }_{\eta }}\left( {\rho ,\theta ,\varphi } \right) = 0.$$
((A.3))
$$\begin{gathered} \left\{ {{{{\left( {\varepsilon - V} \right)}}^{2}} - {{f}_{{R - N}}} + \left( {{{f}_{{R - N}}}\frac{\partial }{{\partial \rho }} + \frac{1}{\rho } - \frac{\alpha }{{{{\rho }^{2}}}}} \right)} \right. \\ \times \,\,\left( {{{f}_{{R - N}}}\frac{\partial }{{\partial \rho }} + \frac{1}{\rho } - \frac{\alpha }{{{{\rho }^{2}}}}} \right) + \frac{{{{f}_{{R - N}}}}}{{{{\rho }^{2}}}} \\ \times \,\,\left[ {\left( {\frac{\partial }{{\partial \theta }} + \frac{1}{2}{\text{cot}}\theta } \right)\left( {\frac{\partial }{{\partial \theta }} + \frac{1}{2}{\text{cot}}\theta } \right)} \right. \\ + \,\,\frac{1}{{{{{\sin }}^{2}}\theta }}\frac{{{{\partial }^{2}}}}{{\partial {{\varphi }^{2}}}} + i{{\Sigma }^{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{3} }}}\frac{\partial }{{\partial \theta }}\left( {\frac{1}{{\sin \theta }}} \right)\frac{\partial }{{\partial \varphi }} \\ \end{gathered} $$
$$\begin{gathered} \, + i{{\gamma }^{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{0} }}}{{\gamma }^{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{3} }}}{{f}_{{R - N}}}\frac{{dV}}{{d\rho }} - i{{\gamma }^{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{0} }}}{{\gamma }^{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{3} }}}{{f}_{{R - N}}}\frac{d}{{d\rho }}(\sqrt {{{f}_{{R - N}}}} ) \\ \, + {{f}_{{R - N}}}\frac{d}{{d\rho }}\left( {\sqrt {{{f}_{{R - N}}}} \frac{1}{\rho }} \right) \\ \end{gathered} $$
((A.4))
$$\begin{gathered} \left. { \times \,\,\left[ {i{{\Sigma }^{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{2} }}}\left( {\frac{\partial }{{\partial \theta }} + \frac{1}{2}{\text{cot}}\theta } \right) - i{{\Sigma }^{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{1} }}}\frac{1}{{\sin \theta }}\frac{\partial }{{\partial \varphi }}} \right]} \right\} \\ \times \,\,{{\Psi }_{\eta }}(\rho ,\theta ,\varphi ) = 0. \\ \end{gathered} $$

As earlier, in (A.4), the equivalent substitution of matrices (12) was performed,

$${{\Sigma }^{{\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{k} }}} = \left( {\begin{array}{*{20}{c}} {{{\sigma }^{k}}}&0 \\ 0&{{{\sigma }^{k}}} \end{array}} \right).$$

The Dirac equations for upper and lower bispinor components

$${{\Psi }_{\eta }}\left( {\rho ,\theta ,\varphi ,t} \right) = \left( {\begin{array}{*{20}{c}} {U\left( {\rho ,\theta ,\varphi } \right)} \\ {W\left( {\rho ,\theta ,\varphi } \right)} \end{array}} \right){{e}^{{ - i\varepsilon t}}}$$
((A.5))

have the form of

$$\begin{gathered} (\varepsilon - V - \sqrt {{{f}_{{R - N}}}} )U \\ = \left( { - i{{\sigma }^{3}}\left( {{{f}_{{R - N}}}\frac{\partial }{{\partial \rho }} + \frac{1}{\rho } - \frac{\alpha }{{{{\rho }^{2}}}}} \right)} \right. \\ \, - i{{\sigma }^{1}}\sqrt {{{f}_{{R - N}}}} \frac{1}{\rho }\left( {\frac{\partial }{{\partial \theta }} + \frac{1}{2}{\text{cot}}\theta } \right)\left. { - \,i{{\sigma }^{2}}\sqrt {{{f}_{{R - N}}}} \frac{1}{\rho }\frac{1}{{\sin \theta }}\frac{\partial }{{\partial \varphi }}} \right)W, \\ \end{gathered} $$
$$\begin{gathered} (\varepsilon - V + \sqrt {{{f}_{{R - N}}}} )W = \left( { - i{{\sigma }^{3}}\left( {{{f}_{{R - N}}}\frac{\partial }{{\partial \rho }} + \frac{1}{\rho } - \frac{\alpha }{{{{\rho }^{2}}}}} \right)} \right. \\ \, - i{{\sigma }^{1}}\sqrt {{{f}_{{R - N}}}} \frac{1}{\rho }\left( {\frac{\partial }{{\partial \theta }} + \frac{1}{2}{\text{cot}}\theta } \right) \\ \end{gathered} $$
((A.6))
$$\,\left. { - i{{\sigma }^{2}}\sqrt {{{f}_{{R - N}}}} \frac{1}{\rho }\frac{1}{{\sin \theta }}\frac{\partial }{{\partial \varphi }}} \right)U.$$

As a result, equation (A.4), taking into account (A.6), can be written for one of the spinors \(U\left( {\rho ,\theta ,\varphi } \right)\) or \(W\left( {\rho ,\theta ,\varphi } \right)\). For the spinor \(U\left( {\rho ,\theta ,\varphi } \right)\), equation (A.4) has the form of

$$\left\{ {{{{\left( {\varepsilon - V} \right)}}^{2}} - {{f}_{{R - N}}} + {{{\left( {{{f}_{{R - N}}}\frac{\partial }{{\partial \rho }} + \frac{1}{\rho } - \frac{\alpha }{{{{\rho }^{2}}}}} \right)}}^{2}}} \right.$$
$$\begin{gathered} + \frac{{{{f}_{{R - N}}}}}{{{{\rho }^{2}}}}\left[ {{{{\left( {\frac{\partial }{{\partial \theta }} + \frac{1}{2}{\text{cot}}\theta } \right)}}^{2}} + \frac{1}{{{{{\sin }}^{2}}\theta }}\frac{{{{\partial }^{2}}}}{{\partial {{\varphi }^{2}}}}} \right. \\ \left. {\, + i{{\sigma }^{3}}\frac{\partial }{{\partial \theta }}\left( {\frac{1}{{\sin \theta }}} \right)\frac{\partial }{{\partial \varphi }}} \right] + {{f}_{{R - N}}}\frac{d}{{d\rho }}\left( {\sqrt {{{f}_{{R - N}}}} \frac{1}{\rho }} \right) \\ \, \times \left[ {i{{\sigma }^{2}}\left( {\frac{\partial }{{\partial \theta }} + \frac{1}{2}{\text{cot}}\theta } \right) - i{{\sigma }^{1}}\frac{1}{{\sin \theta }}\frac{\partial }{{\partial \varphi }}} \right] \\ \end{gathered} $$
$$\begin{gathered} + \left( {{{f}_{{R - N}}}\frac{d}{{d\rho }}(\sqrt {{{f}_{{R - N}}}} ) - {{f}_{{R - N}}}\frac{{dV}}{{d\rho }}} \right) \\ \times \frac{1}{{\varepsilon - V + \sqrt {{{f}_{{R - N}}}} }}\left[ { - {{f}_{{R - N}}}\frac{\partial }{{\partial \rho }} - \frac{1}{\rho } + \frac{\alpha }{{{{\rho }^{2}}}}} \right. \\ \end{gathered} $$
$$\begin{gathered} - \,i{{\sigma }^{2}}\sqrt {{{f}_{{R - N}}}} \frac{1}{\rho }\left( {\frac{\partial }{{\partial \theta }} + \frac{1}{2}{\text{cot}}\theta } \right) \\ \,\left. {\left. { + i{{\sigma }^{1}}\sqrt {{{f}_{{R - N}}}} \frac{1}{\rho }\frac{1}{{\sin \theta }}\frac{\partial }{{\partial \varphi }}} \right]} \right\}U\left( {\rho ,\theta ,\varphi } \right) = 0. \\ \end{gathered} $$
((A.7))

Then, the variables can be separated. It follows from representation (10) that

$$U\left( {r,\theta ,\varphi } \right) = F\left( \rho \right)\xi \left( \theta \right){{e}^{{i{{m}_{\varphi }}\varphi }}}.$$
((A.8))

Using Brill–Wheeler equation (11) and its squared representation [16]

$$\begin{gathered} \left[ {{{{\left( {\frac{\partial }{{\partial \theta }} + \frac{1}{2}{\text{cot}}\theta } \right)}}^{2}} + \frac{1}{{{{{\sin }}^{2}}\theta }}\frac{{{{\partial }^{2}}}}{{\partial {{\varphi }^{2}}}}} \right. \\ \left. {\, + i{{\sigma }^{3}}\frac{\partial }{{\partial \theta }}\left( {\frac{1}{{\sin \theta }}} \right)\frac{\partial }{{\partial \varphi }}} \right]\xi (\theta ){{e}^{{i{{m}_{\varphi }}\varphi }}} = - {{\kappa }^{2}}\xi (\theta ){{e}^{{i{{m}_{\varphi }}\varphi }}}, \\ \end{gathered} $$
((A.9))

we can obtain the second-order equation for the radial function F(ρ)

$$\begin{gathered} \left\{ {{{{\left( {\varepsilon - V} \right)}}^{2}} - {{f}_{{R - N}}} + {{{\left( {{{f}_{{R - N}}}\frac{\partial }{{\partial \rho }} + \frac{1}{\rho } - \frac{\alpha }{{{{\rho }^{2}}}}} \right)}}^{2}}} \right. \\ - \frac{{{{f}_{{R - N}}}{{\kappa }^{2}}}}{{{{\rho }^{2}}}} + {{f}_{{R - N}}}\kappa \frac{d}{{d\rho }}\left( {\sqrt {{{f}_{{R - N}}}} \frac{1}{\rho }} \right) \\ \end{gathered} $$
((A.10))
$$ - \left( {{{f}_{{R - N}}}\frac{d}{{d\rho }}(\sqrt {{{f}_{{R - N}}}} )\, - \,{{f}_{{R - N}}}\frac{{dV}}{{d\rho }}} \right)\frac{1}{{\varepsilon \, - \,V\, + \,\sqrt {{{f}_{{R - N}}}} }}\frac{{\kappa \sqrt {{{f}_{{R - N}}}} }}{\rho }$$
$$\begin{gathered} - \left( {{{f}_{{R - N}}}\frac{d}{{d\rho }}(\sqrt {{{f}_{{R - N}}}} ) - {{f}_{{R - N}}}\frac{{dV}}{{d\rho }}} \right) \\ \times \left. {\frac{1}{{\varepsilon - V + \sqrt {{{f}_{{R - N}}}} }}\left( {{{f}_{{R - N}}}\frac{\partial }{{\partial \rho }} + \frac{1}{\rho } - \frac{\alpha }{{{{\rho }^{2}}}}} \right)} \right\}F(\rho ) = 0. \\ \end{gathered} $$

The third and the last summands in equation (A.10) are not self-conjugate. Let us perform nonunitary similarity transformation for self-conjugacy of (A.10).

$$F\left( \rho \right) = g_{F}^{{ - 1}}\left( \rho \right){{\psi }_{F}}\left( \rho \right).$$
((A.11))

If we denote in equation (15) that

$$A\left( \rho \right) = - \frac{1}{{{{f}_{{R - N}}}}}\left( {\frac{{1 + \kappa \sqrt {{{f}_{{R - N}}}} }}{\rho } - \frac{\alpha }{{{{\rho }^{2}}}}} \right),$$
((A.12))
$$B\left( \rho \right) = \frac{1}{{{{f}_{{R - N}}}}}\left( {\varepsilon - \frac{{{{\alpha }_{{{\text{em}}}}}}}{\rho } + \sqrt {{{f}_{{R - N}}}} } \right),$$
((A.13))
$$C\left( \rho \right) = - \frac{1}{{{{f}_{{R - N}}}}}\left( {\varepsilon - \frac{{{{\alpha }_{{{\text{em}}}}}}}{\rho } + \sqrt {{{f}_{{R - N}}}} } \right),$$
((A.14))
$$D\left( \rho \right) = - \frac{1}{{{{f}_{{R - N}}}}}\left( {\frac{{1 - \kappa \sqrt {{{f}_{{R - N}}}} }}{\rho } - \frac{\alpha }{{{{\rho }^{2}}}}} \right)$$
((A.15))

and besides introduce the denotations of

$${{A}_{F}}\left( \rho \right) = - \frac{1}{B}\frac{{dB}}{{d\rho }} - A - D,$$
((A.16))
$${{A}_{G}}\left( \rho \right) = - \frac{1}{C}\frac{{dC}}{{d\rho }} - A - D,$$
((A.17))

then, the sought transformation is

$${{g}_{F}}(\rho ) = \exp \left( {\frac{1}{2}\int {{{A}_{F}}(\rho ')d\rho '} } \right).$$
((A.18))

As the result, we write equation (A.10) as

$$\hat {M}F(\rho ) = 0,$$

then, the transformed self-conjugate equation has the view of

$${{g}_{F}}\hat {M}g_{F}^{{ - 1}}{{\psi }_{F}}(\rho ) = 0$$
((A.19))

Equation (A.19) can be written in the form of the Schrödinger-type second-order equation with the effective potential \(U_{{{\text{eff}}}}^{F}(\rho )\)

$$\frac{{{{d}^{2}}{{\psi }_{F}}}}{{d{{\rho }^{2}}}} + 2({{E}_{{{\text{Schr}}}}} - U_{{{\text{eff}}}}^{F}){{\psi }_{F}} = 0,$$
((A.20))

where

$${{E}_{{{\text{Schr}}}}} = \frac{1}{2}({{\varepsilon }^{2}} - 1),$$
((A.21))
$$\begin{gathered} U_{{{\text{eff}}}}^{F} = - \frac{1}{4}\frac{1}{B}\frac{{{{d}^{2}}B}}{{d{{\rho }^{2}}}} + \frac{3}{8}{{\left( {\frac{1}{B}\frac{{dB}}{{d\rho }}} \right)}^{2}} \\ - \frac{1}{4}\left( {A - D} \right)\frac{1}{B}\frac{{dB}}{{d\rho }} + \frac{1}{4}\frac{d}{{d\rho }}\left( {A - D} \right) \\ + \frac{1}{8}{{\left( {A - D} \right)}^{2}} + \frac{1}{2}BC + {{E}_{{{\text{Schr}}}}}. \\ \end{gathered} $$
((A.22))

The summand ESchr (A.21) in equation (A.20) is separated and simultaneously added to (A.22). This is done, on the one hand, for equation (A.20) to take the form of Schrödinger-type equation, on the other hand, to ensure the classical asymptotics of the effective potential at \(\rho \to \infty \).

For the lower spinor \(W(\rho ,\theta ,\varphi )\) with radial function G(ρ), the appropriate formulas have the view

$$G\left( \rho \right) = g_{G}^{{ - 1}}{{\psi }_{G}}\left( \rho \right),$$
((A.23))
$${{g}_{G}}(\rho ) = \exp \left( {\frac{1}{2}\int {{{A}_{G}}(\rho ')d\rho '} } \right),$$
((A.24))
$$\frac{{{{d}^{2}}{{\psi }_{G}}}}{{d{{\rho }^{2}}}} + 2({{E}_{{{\text{Schr}}}}} - U_{{{\text{eff}}}}^{G}){{\psi }_{G}} = 0,$$
((A.25))
$$\begin{gathered} U_{{{\text{eff}}}}^{G} = - \frac{1}{4}\frac{1}{C}\frac{{{{d}^{2}}C}}{{d{{\rho }^{2}}}} + \frac{3}{8}{{\left( {\frac{1}{C}\frac{{dC}}{{d\rho }}} \right)}^{2}} \\ + \frac{1}{4}\frac{{\left( {A - D} \right)}}{C}\frac{{dC}}{{d\rho }} - \frac{1}{4}\frac{d}{{d\rho }}\left( {A - D} \right) \\ + \frac{1}{8}{{\left( {A - D} \right)}^{2}} + \frac{1}{2}BC + {{E}_{{{\text{Schr}}}}}. \\ \end{gathered} $$
((A.26))

APPENDIX B

1.1 EFFECTIVE POTENTIAL OF THE RN FIELD IN SCHRÖDINGER-TYPE EQUATION

According to (A.12)–(A.15), (A.22), we can obtain

$$\begin{gathered} \frac{3}{8}\frac{1}{{{{B}^{2}}}}{{\left( {\frac{{dB}}{{d\rho }}} \right)}^{2}} \\ = \frac{3}{8}\left\{ {\frac{{{{f}_{{R - N}}}}}{{\omega + \sqrt {{{f}_{{R - N}}}} }}\left[ { - \frac{1}{{f_{{R - N}}^{2}}}f_{{R - N}}^{'}(\omega + \sqrt {{{f}_{{R - N}}}} )} \right.} \right. \\ {{\left. {\left. { + \frac{1}{{{{f}_{{R - N}}}}}\left( {\omega ' + \frac{{f_{{R - N}}^{'}}}{{2\sqrt {{{f}_{{R - N}}}} }}} \right)} \right]} \right\}}^{2}}, \\ \end{gathered} $$
((B.1))
$$\begin{gathered} - \frac{1}{4}\frac{1}{B}\frac{{{{d}^{2}}B}}{{d{{\rho }^{2}}}} = - \frac{1}{4}\frac{{{{f}_{{R - N}}}}}{{\omega + \sqrt {{{f}_{{R - N}}}} }} \\ \times \left[ {\frac{2}{{f_{{R - N}}^{3}}}{{{(f_{{R - N}}^{'})}}^{2}}(\omega + \sqrt {{{f}_{{R - N}}}} )} \right. \\ \end{gathered} $$
$$ - \frac{1}{{f_{{R - N}}^{2}}}f_{{R - N}}^{{''}}(\omega + \sqrt {{{f}_{{R - N}}}} )$$
((B.2))
$$\begin{gathered} - \frac{2}{{f_{{R - N}}^{2}}}f_{{R - N}}^{'}\left( {\omega ' + \frac{{f_{{R - N}}^{'}}}{{2\sqrt {{{f}_{{R - N}}}} }}} \right) \\ \left. { + \frac{1}{{{{f}_{{R - N}}}}}\left( {\omega '' + \frac{{f_{{R - N}}^{{''}}}}{{2\sqrt {{{f}_{{R - N}}}} }} - \frac{{{{{(f_{{R - N}}^{'})}}^{2}}}}{{4f_{{R - N}}^{{3/2}}}}} \right)} \right], \\ \end{gathered} $$
$$\frac{1}{4}\frac{d}{{d\rho }}\left( {A - D} \right) = \frac{\kappa }{2}\left[ {\frac{1}{2}\frac{{f_{{R - N}}^{'}}}{{\rho f_{{R - N}}^{{3/2}}}} + \frac{1}{{{{\rho }^{2}}f_{{R - N}}^{{1/2}}}}} \right],$$
((B.3))
$$\begin{gathered} - \frac{1}{4}\frac{{\left( {A - D} \right)}}{B}\frac{{dB}}{{d\rho }} \\ = \frac{\kappa }{{2\rho f_{{R - N}}^{{1/2}}}}\left( { - \frac{{f_{{R - N}}^{'}}}{{{{f}_{{R - N}}}}} + \frac{1}{{\omega + \sqrt {{{f}_{{R - N}}}} }}\left( {\omega ' + \frac{{f_{{R - N}}^{'}}}{{2\sqrt {{{f}_{{R - N}}}} }}} \right)} \right), \\ \end{gathered} $$
((B.4))
$$\frac{1}{8}{{\left( {A - D} \right)}^{2}} = \frac{{{{\kappa }^{2}}}}{{2{{f}_{{R - N}}}{{\rho }^{2}}}},$$
((B.5))
$$\frac{1}{2}BC = - \frac{1}{{2f_{{R - N}}^{2}}}({{\omega }^{2}} - {{f}_{{R - N}}}).$$
((B.6))

In (B.1)–(B.6),

$${{f}_{{R - N}}} = 1 - \frac{{2\alpha }}{\rho } + \frac{{\alpha _{Q}^{2}}}{{{{\rho }^{2}}}},$$
$$f_{{R - N}}^{'} \equiv \frac{{d{{f}_{{R - N}}}}}{{d\rho }} = \frac{{2\alpha }}{{{{\rho }^{2}}}} - \frac{{2\alpha _{Q}^{2}}}{{{{\rho }^{3}}}},$$
$$f_{{R - N}}^{{''}} \equiv \frac{{df_{{R - N}}^{2}}}{{d{{\rho }^{2}}}} = - \frac{{4\alpha }}{{{{\rho }^{3}}}} + \frac{{6\alpha _{Q}^{2}}}{{{{\rho }^{4}}}},$$
$$\omega = \varepsilon - \frac{{{{\alpha }_{{{\text{em}}}}}}}{\rho },\quad \omega ' \equiv \frac{{d\omega }}{{d\rho }} = \frac{{{{\alpha }_{{{\text{em}}}}}}}{{{{\rho }^{2}}}},$$
$$\omega '' \equiv \frac{{{{d}^{2}}\omega }}{{d{{\rho }^{2}}}} = - \frac{{2{{\alpha }_{{{\text{em}}}}}}}{{{{\rho }^{3}}}}.$$

The sum of expressions ESchr and (B.1)–(B.6) leads to the expression for the effective potential \(U_{{{\text{eff}}}}^{F}\) (A.22).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Neznamov, V.P., Safronov, I.I. & Shemarulin, V.E. Stationary Solutions of Second-Order Equations for Fermions in Reissner–Nordström Space-Time. J. Exp. Theor. Phys. 127, 684–704 (2018). https://doi.org/10.1134/S1063776118100199

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118100199

Keywords

Navigation